博碩士論文 102324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.15.2.11
姓名 王靖棠(CHING-TANG WANG)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 混成膜法從脂肪組織中分離高純度脂肪誘導幹細胞之研究
(A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissue)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於再生醫療而言,人類脂肪誘導幹細胞(ADSCs)是許多富有前景的細胞來源之一,因為它們不只能以大量且以最少的小型手術流程取得,例如:抽脂手術。不像人類胚胎幹細胞(hESCs),需破壞胚胎,成體幹細胞並不會有道德上的爭議。對人類胚胎幹細胞(hESCs)和人類誘導多能性幹細胞(hiPSCs)而言,培養成體幹細胞只需相對低的花費。此外,人類胚胎幹細胞和人類誘導多能性幹細胞的無異種培養非常困難,且(或者)需要花費相當龐大的資金,因此人類脂肪誘導幹細胞比起人類胚胎幹細胞和人類脂肪誘導幹細胞被視為更有潛力的幹細胞來源。但是,人類脂肪誘導幹細胞的使用還是有相當的侷限性,因為比起人類胚胎幹細胞和人類誘導多能性幹細胞,它們的多能性和分化能力非常低,因此如何維持或增加人類脂肪誘導幹細胞的多能性變得更加重要。在這個研究中,脂肪組織被膠原蛋白酶消化,緊接著進行離心,隨後我們可以得到間質血管部分(SVF)。間質血管部分的細胞不但由多種細胞組成且雜亂,造成各式各樣的基因型態,且這些細胞具有非常高的多能性。雖然人類脂肪誘導幹細胞可以藉由培養在細胞培養盤上去純化,但是他們的多能性隨著時間顯著的下降。在此研究,為了改善人類脂肪誘導幹細胞的臨床應用,相對於傳統的培養方法,將花費更少時間建立混成薄膜法。除此之外,在此研究中,從間質血管部分細胞溶液中純化的人類脂肪誘導幹細胞,具有極高的純度和多能性。間質血管部分細胞溶液被過濾於8m到25m孔徑的薄膜且這些薄膜被培養在細胞培養液中15到18天,從10% PLGA/silk sscreen 混成薄膜中爬出的細胞包含了極高的表現間葉幹細胞表面抗原細胞的百分比,且這些細胞較於經過傳統培養法培養的細胞,表現了更高的多能性基因(Oct4, Sox2, Klf4, Nanog)。值得注意的是,在10% PLGA/silk screen 混成薄膜過濾的permeate 和recovery 溶液中,間質血管部分中細胞的多能性可以被維持,甚至加強。此外,烷鍊磷酸酶活性(ALP)在換誘導骨分化培養液後的14天後被分析,Alizarin red staining, von Kossa staining則是在換誘導骨分化培養液後的28天被檢測。由此可證被10% PLGA/silk screen 混成薄膜過濾之permeate和recovery 溶液中的細胞,較於primary 細胞和經由傳統培養法培養的細胞,具有較高的骨分化能力。
摘要(英) Human adipose-derived stem cells (hADSCs) are one of the promising cell sources in regenerative medicine because they can be obtained in abundant quantity and harvested by minimally invasive procedure such as liposuction. Unlike embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs), adult stem cells do not generate the ethical concerns that accompany hESCs and are cultivated in relatively low cost. Furthermore, the xeno-free culture of hESCs and hiPSCs is difficult to achieve and/or are extremely costly. Therefore, hADSCs are considered to be a more attractive source of stem cells than hESCs and hiPSCs. However, hADSCs are limited for application because of their low pluripotency and differentiation ability compared with hESCs and hiPSCs. It is a critical issue how to maintain or increase the pluripotency of hADSCs. The adipose tissue was treated with collagenase to digest, followed by centrifugation in this study. Subsequently, stromal vascular fraction (SVF) was obtained. Cells in SVF were not only heterogeneous and contain many different types of cells leading to various genotypes but also held high pluripotency. Although hADSCs could be purified by culturing on tissue culture dishes, the pluripotency significantly decreased with time. In order to improve the clinical application of hADSCs, the hybrid membrane method that takes shorter time to purify hADSCs (i.e. less than 30 min) than conventional culture method (i.e. 5-12 days) has developed in this study where hADSCs are purified from SVF cell solution with extremely high purity and pluripotency. A SVF cell solution was permeated through the porous membranes with a pore size from 8 m to 25 m, and membranes were incubated in cell culture medium for 15-18 days. The hADSCs migrated from 10% PLGA/silk screens hybrid membranes contain an extremely high percentage (e.g. >95%) of cells positive for mesenchymal stem cell markers and express higher pluripotent genes (Oct4, Sox2, Klf4 and Nanog) than the cells after culturing by conventional culture method. It is noteworthy that the pluripotency of cells in SVF could be kept or even enhanced in permeate and recovery solution filtered by 10% PLGA/silk screen hybrid membranes. Besides, the alkaline phosphatase activity (ALP) was analyzed after 14 days. Alizarin red staining, von Kossa staining were observed after 28 days. It was indicated that cells in permeate and recovery solution purified by10% PLGA/silk screen hybrid membranes had higher ability to differentiate into osteoblasts compared with primary cells and cells after culturing by conventional culture method.
關鍵字(中) ★ 脂肪誘導幹細胞
★ 純化
★ 多能性
關鍵字(英) ★ adipose-derived stem cells
★ purification
★ pluripotency
論文目次 Index of Contents

Chapter 1 Introduction 1
1-1 Stem Cells 1
1-1-1 Embryonic stem cells (ESCs) 2
1-1-2 Induced pluripotent stem cells (iPSCs) 3
1-1-3 Hematopoietic stem cells (HSCs) 3
1-1-4 Mesenchymal stem cells (MSCs) 3
1-2 Adipose-derived stem cells 4
1-3 Differentiation capacity of adipose-derived stem cells 6
1-3-1 Lineage-specific differentiation potential 6
1-3-2 Adipogenic differentiation 6
1-3-3 Chondrogenic and osteogenic differentiation 7
1-3-4 Myogenic and cardiomyogenic differentiation 8
1-3-5 Other effective factors impacting MSCs and ADSCs differentiation 9
1-4 Immunophenotype 10
1-5 Isolation of adipose-derived stem cells 12
1-5-1 Cell isolation 12
1-5-2 Hybrid Membranes purification method 13
1-5-3 Fluorescence-activated cell sorting (FACS) 14
1-5-4 Magnetic-activated cell sorting(MACS) 16
1-6 Flow Cytometry 17
1-7 Osteogenic differentiation 19
1-7-1 The process of bone development in situ 19
1-7-2 Developmental pathways for bone formation 20
1-7-3 The marker of osteogenic differentiation 23
1-8 Pluripotent markers 24
1-8-1 NANOG 24
1-8-2 SRY (sex determining region Y)-box 2 (Sox2) 25
1-8-3 Octamer-binding transcription factor 4 (Oct4) 25
Chapter 2 Materials and Methods 26
2-1 Materials 26
2-1-1 PLGA/silk screen hybrid membranes 26
2-1-2 Culture medium 26
2-1-3 Osteogenic induction medium 26
2-1-4 Phosphate buffer saline solution (PBS) 26
2-1-5 Digestion solution 26
2-1-6 ACK lysis solution 26
2-1-7 Flow Cytometry 27
2-1-8 RNA extraction 27
2-1-9 Reverse transcription (RT) 27
2-1-10 Real-time polymerization chain reaction (q-PCR) 27
2-1-11 Q-PCR Probe 27
2-1-12 Immunostaining 28
2-1-13 Alkaline Phosphatase Assay 29
2-1-14 Alizarin Red Staining 29
2-1-15 von Kossa Staining 29
2-2 Experimental Method 29
2-2-1 Phosphate buffer saline solution (PBS) preparation 29
2-2-2 Culture medium preparation 29
2-2-3 Isolation and culture of adipose-derived stromal cells 30
2-2-4 Culture and passaging of ADSCs 31
2-2-5 Cell density measurement 32
2-2-6 Preparation of 10% PLGA/silk screen hybrid membranes 33
2-2-7 Cell purification (hybrid membrane method) 34
2-2-8 Differentiation of adipose tissue-derived stem cells 35
2-2-9 Surface markers analyzed by flow cytometry 35
2-2-10 Immunostaining 35
2-2-11 Isolation of total RNA 36
2-2-12 Reverse transcription of mRNA into DNA 36
2-2-13 Quantitative real time polymerase chain reaction 37
2-2-14 Alkaline phosphatase activity 38
2-2-15 Alizarin Red staining 38
2-2-16 von Kossa staining 39
2-2-17 Quantitative analysis of osteogenesis 39
2-2-18 Scanning electron microscopy (SEM) analysis 39
Chapter 3 Results and Discussions 40
3-1 Characterization of several membranes 40
3-2 Characterization of human adipose derived stem cells (hADSCs) and purification from stromal vascular fraction (SVF) in culture method 47
3-3 Purification of hADSCs from stromal vascular fraction (SVF) in hybrid membrane method 49
3-3-1 Growth curve of human adipose-derived stem cells 50
3-3-2 Flow cytometry analysis of human adipose-derived stem cells (ADSCs) 52
3-4 Pluripotency analysis of human adipose-derived stem cells (hADSCs) 58
3-5 The ability of adipose-derived stem cells purified by hybrid membrane method to differentiate into osteoblasts 67
Chapter 4 Conclusions 71
參考文獻 1. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-1147.
2. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow (vol 418, pg 41, 2002). Nature, 2007. 447(7146): p. 879-880.
3. Higuchi, A., et al., Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chemical Reviews, 2012. 112(8): p. 4507-4540.
4. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-U1.
5. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
6. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920.
7. Lin, S.-L., et al., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. Rna-a Publication of the Rna Society, 2008. 14(10): p. 2115-2124.
8. Zhou, H., et al., Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins. Cell Stem Cell, 2009. 4(5): p. 381-384.
9. Higuchi, A., et al., Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews, 2011. 111(5): p. 3021-3035.
10. Bosi, A. and B. Bartolozzi, Safety of Bone Marrow Stem Cell Donation: A Review. Transplantation Proceedings, 2010. 42(6): p. 2192-2194.
11. Favre, G., et al., Differences between graft product and donor side effects following bone marrow or stem cell donation. Bone Marrow Transplantation, 2003. 32(9): p. 873-880.
12. Gratwohl, A., et al., Predictability of hematopoietic stem cell transplantation rates. Haematologica-the Hematology Journal, 2007. 92(12): p. 1679-1686.
13. Hamidieh, A.A., et al., Autologous Stem Cell Transplantation as Treatment Modality in a Patient With Relapsed Pancreatoblastoma. Pediatric Blood & Cancer, 2010. 55(3): p. 573-576.
14. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. Journal of Biomedical Materials Research Part A, 2008. 85a(4): p. 853-861.
15. Arinzeh, T.L., et al., Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. Journal of Bone and Joint Surgery-American Volume, 2003. 85a(10): p. 1927-1935.
16. Caplan, A.I. and J.E. Dennis, Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 2006. 98(5): p. 1076-1084.
17. Horwitz, E.M., et al., Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(13): p. 8932-8937.
18. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-147.
19. Scadden, D.T., The stem-cell niche as an entity of action. Nature, 2006. 441(7097): p. 1075-1079.
20. Kern, S., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006. 24(5): p. 1294-1301.
21. Crisan, M., et al., A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 2008. 3(3): p. 301-313.
22. Brighton, C.T. and R.M. Hunt, EARLY HISTOLOGICAL AND ULTRASTRUCTURAL-CHANGES IN MEDULLARY FRACTURE CALLUS. Journal of Bone and Joint Surgery-American Volume, 1991. 73A(6): p. 832-847.
23. Netter, F.H., Musculoskeletal System: Anatomy, physiology and metabolic disorders. U.S.A : Indoo, 1987.
24. Zuk, P.A., et al., Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 2001. 7(2): p. 211-228.
25. Aust, L., et al., Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 2004. 6(1): p. 7-14.
26. Gimble, J.M. and F. Guilak, Differentiation potential of adipose derived adult stem (ADAS) cells. Current Topics in Developmental Biology, Vol 58, 2003. 58: p. 137-160.
27. Fraser, J.K., et al., Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 2006. 24(4): p. 150-154.
28. Locke, M., J. Windsor, and P.R. Dunbar, Human adipose-derived stem cells: isolation, characterization and applications in surgery. Anz Journal of Surgery, 2009. 79(4): p. 235-244.
29. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 2002. 13(12): p. 4279-4295.
30. van Dijk, A., et al., Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell and Tissue Research, 2008. 334(3): p. 457-467.
31. Schaeffler, A. and C. Buechler, Concise review: Adipose tissue-derived stromal cells - Basic and clinical implications for novel cell-based therapies. Stem Cells, 2007. 25(4): p. 818-827.
32. Mitchell, J.B., et al., Immunophenotype of human adipose-derived cells: Temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 2006. 24(2): p. 376-385.
33. Oedayrajsingh-Varma, M.J., et al., Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 2006. 8(2): p. 166-177.
34. Zaragosi, L.-E., G. Ailhaud, and C. Dani, Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells, 2006. 24(11): p. 2412-2419.
35. Rubio, D., et al., Spontaneous human adult stem cell transformation (Retracted article. See vol. 70, pg. 6682, 2010). Cancer Research, 2005. 65(8): p. 3035-3039.
36. Liu, Q., et al., A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials, 2008. 29(36): p. 4792-4799.
37. Ahn, H.H., et al., In Vivo Osteogenic Differentiation of Human Adipose-Derived Stem Cells in an Injectable In Situ-Forming Gel Scaffold. Tissue Engineering Part A, 2009. 15(7): p. 1821-1832.
38. Flynn, L.E., The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials, 2010. 31(17): p. 4715-4724.
39. Natesan, S., et al., Adipose-Derived Stem Cell Delivery into Collagen Gels Using Chitosan Microspheres. Tissue Engineering Part A, 2010. 16(4): p. 1369-1384.
40. Awad, H.A., et al., Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 2004. 25(16): p. 3211-3222.
41. Betre, H., et al., Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials, 2006. 27(1): p. 91-99.
42. Tchkonia, T., et al., Abundance of two human preadipocyte subtypes with distinct capacities for replication, adipogenesis, and apoptosis varies among fat depots. American Journal of Physiology-Endocrinology and Metabolism, 2005. 288(1): p. E267-E277.
43. Tchkonia, T., et al., Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes, 2006. 55(9): p. 2571-2578.
44. Macotela, Y., et al., Intrinsic Differences in Adipocyte Precursor Cells From Different White Fat Depots. Diabetes, 2012. 61(7): p. 1691-1699.
45. Shi, Y.Y., et al., The osteogenic potential of adipose-derived mesenchymal cells is maintained with aging. Plastic and Reconstructive Surgery, 2005. 116(6): p. 1686-1696.
46. Rider, D.A., et al., Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells, 2008. 26(6): p. 1598-1608.
47. Peptan, I.A., L. Hong, and J.J. Mao, Comparison of osteogenic potentials of visceral and subcutaneous adipose-derived cells of rabbits. Plastic and Reconstructive Surgery, 2006. 117(5): p. 1462-1470.
48. Mochizuki, T., et al., Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with. subcutaneous fat-derived cells - Distinguishing properties of mesenchymal stem cells in humans. Arthritis and Rheumatism, 2006. 54(3): p. 843-853.
49. Stein, G.S., et al., Transcriptional control of osteoblast growth and differentiation. Physiological Reviews, 1996. 76(2): p. 593-629.
50. Martin, I., et al., Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. Journal of Biomedical Materials Research, 2001. 55(2): p. 229-235.
51. Noeth, U., et al., Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. Journal of Biomedical Materials Research Part A, 2007. 83A(3): p. 626-635.
52. Miyahara, Y., et al., Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 2006. 12(4): p. 459-465.
53. Planat-Benard, V., et al., Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 2004. 94(2): p. 223-229.
54. Strem, B.M., et al., Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy, 2005. 7(3): p. 282-291.
55. Rodriguez, A.M., et al., Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. Journal of Experimental Medicine, 2005. 201(9): p. 1397-1405.
56. Sefcik, L.S., et al., Collagen nanofibres are a biomimetic substrate for the serum-free osteogenic differentiation of human adipose stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2008. 2(4): p. 210-220.
57. Malafaya, P.B., et al., Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. Journal of Materials Science-Materials in Medicine, 2005. 16(12): p. 1077-1085.
58. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
59. Ward, D.F., Jr., et al., Mechanical strain enhances extracellular matrix-induced gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells and Development, 2007. 16(3): p. 467-479.
60. Zscharnack, M., et al., Low Oxygen Expansion Improves Subsequent Chondrogenesis of Ovine Bone-Marrow-Derived Mesenchymal Stem Cells in Collagen Type I Hydrogel. Cells Tissues Organs, 2009. 190(2): p. 81-93.
61. Zimmerlin, L., et al., Stromal Vascular Progenitors in Adult Human Adipose Tissue. Cytometry Part A, 2010. 77A(1): p. 22-30.
62. Yoshimura, K., et al., Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. Journal of Cellular Physiology, 2006. 208(1): p. 64-76.
63. Civin CI, S.L., Brovall C, Fackler MJ, Schwartz JF, Shaper JH., Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol, 1984. 133(1): p. 157-65.
64. Asahara, T., et al., Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997. 275(5302): p. 964-967.
65. Pusztaszeri, M.P., W. Seelentag, and F.T. Bosman, Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. Journal of Histochemistry & Cytochemistry, 2006. 54(4): p. 385-395.
66. Lin, G., et al., Defining Stem and Progenitor Cells within Adipose Tissue. Stem Cells and Development, 2008. 17(6): p. 1053-1063.
67. Traktuev, D.O., et al., A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation Research, 2008. 102(1): p. 77-85.
68. Zannettino, A.C.W., et al., Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of Cellular Physiology, 2008. 214(2): p. 413-421.
69. Sengenes, C., et al., Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. Journal of Cellular Physiology, 2005. 205(1): p. 114-122.
70. Mizuno, H., M. Tobita, and A.C. Uysal, Concise Review: Adipose-Derived Stem Cells as a Novel Tool for Future Regenerative Medicine. Stem Cells, 2012. 30(5): p. 804-810.
71. Higuchi, A., et al., Cell separation between mesenchymal progenitor cells through porous polymeric membranes. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2005. 74B(1): p. 511-519.
72. Higuchi, A., et al., Separation of CD34(+) cells from human peripheral blood through polyurethane foaming membranes. Journal of Biomedical Materials Research Part A, 2006. 78A(3): p. 491-499.
73. Rodbell, M., Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem, 1966. 241(1): p. 130-9.
74. Rodbell, M., The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin. J Biol Chem, 1966. 241(17): p. 3909-17.
75. Rodbell, M.a.A.B.J., Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem, 1966. 241(1): p. 140-2.
76. Kurita, M., et al., Influences of centrifugation on cells and tissues in liposuction aspirates: Optimized centrifugation for lipotransfer and cell isolation. Plastic and Reconstructive Surgery, 2008. 121(3): p. 1033-1041.
77. Higuchi, A., et al., Peripheral blood cell separation through surface-modified polyurethane membranes. Journal of Biomedical Materials Research Part A, 2004. 68A(1): p. 34-42.
78. Higuchi, A., et al., Separation of Hematopoietic Stem and Progenitor Cells from Human Peripheral Blood Through Polyurethane Foaming Membranes Modified with Several Amino Acids. Journal of Applied Polymer Science, 2009. 114(2): p. 671-679.
79. Chen, D.-C., et al., Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials, 2014. 35(14): p. 4278-4287.
80. McMurray, R.J., et al., Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nature Materials, 2011. 10(8): p. 637-644.
81. Wu, C.-H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-8239.
82. Higuchi, A., A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Sci. Rep., 2015. 5(10217).
83. Fulwyler, M.J., Electronic separation of biological cells by volume. Science, 1965. 150(3698): p. 910-1.
84. Sweet, R.G., High Frequency Recording with Electrostatically Deflected Ink Jets. Review of Scientific Instruments, 1965. 36(2): p. 131-136.
85. Van Dilla, M.A., M.J. Fulwyler, and I.U. Boone, Volume Distribution and Separation of Normal Human Leucocytes. Experimental Biology and Medicine, 1967. 125(2): p. 367-370.
86. Bonner, W.A., et al., Fluorescence Activated Cell Sorting Review of Scientific Instruments, 1972. 43(3): p. 404-409.
87. Johnson, K.W., M. Doner, and P.J. Quesenberry, Flourescence Activated Cell Sorting: A Window on the Stem Cell Current Pharmaceutical Biotechnology 2007. 8(3): p. 133-139.
88. Assenmacher, M., et al., FLUORESCENCE-ACTIVATED CYTOMETRY CELL SORTING BASED ON IMMUNOLOGICAL RECOGNITION. Clinical Biochemistry, 1995. 28(1): p. 39-40.
89. Miltenyi, S.e.a., High gradient magnetic cell separation with MACS. Cytometry, 1990. 11(2): p. 231-238.
90. Kato, K.a.A.R., Isolation and Characterization of CD34+ hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting. Cytometry, 1993. 14(4): p. 384-392.
91. Dewynter, E.A., et al., COMPARISON OF PURITY AND ENRICHMENT OF CD34(+) CELLS FROM BONE-MARROW, UMBILICAL-CORD AND PERIPHERAL-BLOOD (PRIMED FOR APHERESIS) USING 5 SEPARATION SYSTEMS. Stem Cells, 1995. 13(5): p. 524-532.
92. McNiece, I., et al., Large-scale isolation of CD34+ cells using the Amgen Cell Selection Device results in high levels of purity and recovery. Journal of Hematotherapy, 1997. 6(1): p. 5-11.
93. Richel, D.J., et al., Highly purified CD34(+) cells isolated using magnetically activated cell selection provide rapid engraftment following high-dose chemotherapy in breast cancer patients. Bone Marrow Transplantation, 2000. 25(3): p. 243-249.
94. Ormerod, M.G., Flow cytometry: A practical approach, 3rd edition. Oxford University Press, 2000.
95. Watson, J., et al., Introduction to flow cytometry, First paperback edition. Cambridge University Press, 2004.
96. Olsen, B.R., A.M. Reginato, and W.F. Wang, Bone development. Annual Review of Cell and Developmental Biology, 2000. 16: p. 191-220.
97. Harada, S. and G.A. Rodan, Control of osteoblast function and regulation of bone mass. Nature, 2003. 423(6937): p. 349-355.
98. Lian, J.B., et al., Networks and hubs for the transcriptional control of osteoblastogenesis. Reviews in Endocrine & Metabolic Disorders, 2006. 7(1-2): p. 1-16.
99. Ducy, P., et al., Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 1997. 89(5): p. 747-754.
100. Lengner, C.J., et al., Activation of the bone-related Runx2/Cbfa1 promoter in mesenchymal condensations and developing chondrocytes of the axial skeleton. Mechanisms of Development, 2002. 114(1-2): p. 167-170.
101. Romero-Prado, M., et al., Functional characterization of human mesenchymal stem cells that maintain osteochondral fates. Journal of Cellular Biochemistry, 2006. 98(6): p. 1457-1470.
102. Murtaugh, L.C., et al., The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-Dependent axial chondrogenesis. Developmental Cell, 2001. 1(3): p. 411-422.
103. Iwamoto, M., et al., Runx2 expression and action in chondrocytes are regulated by retinoid signaling and parathyroid hormone-related peptide (PTHrP). Osteoarthritis and Cartilage, 2003. 11(1): p. 6-15.
104. Eames, B.F., P.T. Sharpe, and J.A. Helms, Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2. Developmental Biology, 2004. 274(1): p. 188-200.
105. Lengner, C.J., et al., Nkx3.2-mediated repression of Runx2 promotes chondrogenic differentiation. Journal of Biological Chemistry, 2005. 280(16): p. 15872-15879.
106. Guo, J., et al., PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Developmental Biology, 2006. 292(1): p. 116-128.
107. Provot, S., et al., Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development, 2006. 133(4): p. 651-662.
108. Li, T.F., et al., Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Experimental Cell Research, 2004. 299(1): p. 128-136.
109. Zelzer, E., et al., Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mechanisms of Development, 2001. 106(1-2): p. 97-106.
110. Pratap, J., et al., The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Molecular and Cellular Biology, 2005. 25(19): p. 8581-8591.
111. ten Dijke, P., et al., Signal transduction of bone morphogenetic proteins in osteoblast differentiation. Journal of Bone and Joint Surgery-American Volume, 2003. 85A: p. 34-38.
112. Chen, D., M. Zhao, and G.R. Mundy, Bone morphogenetic proteins. Growth Factors, 2004. 22(4): p. 233-241.
113. Bidder, M., T. Latifi, and D.A. Towler, Reciprocal temporospatial patterns of Msx2 and osteocalcin gene expression during murine odontogenesis. Journal of Bone and Mineral Research, 1998. 13(4): p. 609-619.
114. Ferrari, D., et al., Dlx-5 in limb initiation in the chick embryo. Developmental Dynamics, 1999. 216(1): p. 10-15.
115. Holleville, N., et al., BMP signals regulate Dlx5 during early avian skull development. Developmental Biology, 2003. 257(1): p. 177-189.
116. Hassan, M.Q., et al., Dlx3 transcriptional regulation of osteoblast differentiation: Temporal recruitment of Msx2 Dlx3 an Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Molecular and Cellular Biology, 2004. 24(20): p. 9248-9261.
117. Depew, M.J., et al., Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development. Journal of Anatomy, 2005. 207(5): p. 501-561.
118. Dodig, M., et al., Ectopic Msx2 overexpression inhibits and Msx2 antisense stimulates calvarial osteoblast differentiation. Developmental Biology, 1999. 209(2): p. 298-307.
119. Lee, M.H., et al., BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. Journal of Biological Chemistry, 2003. 278(36): p. 34387-34394.
120. Lee, M.H., et al., BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochemical and Biophysical Research Communications, 2003. 309(3): p. 689-694.
121. Cheng, S.L., et al., Msx2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. Journal of Biological Chemistry, 2003. 278(46): p. 45969-45977.
122. Ichida, F., et al., Reciprocal roles of Msx2 in regulation of osteoblast and adipocyte differentiation. Journal of Biological Chemistry, 2004. 279(32): p. 34015-34022.
123. Yoshizawa, T., et al., Homeobox protein Msx2 acts as a molecular defense mechanism for preventing ossification in ligament fibroblasts. Molecular and Cellular Biology, 2004. 24(8): p. 3460-3472.
124. Balint, E., et al., Phenotype discovery by gene expression profiling: Mapping of biological processes linked to BMP-2-mediated osteoblast differentiation. Journal of Cellular Biochemistry, 2003. 89(2): p. 401-426.
125. Shirakabe, K., et al., Regulation of the activity of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes to Cells, 2001. 6(10): p. 851-856.
126. Hassan, M.Q.e.a., hoxa10: a BMP-2-responsive gene activates runx2 and regulates osteogenesis. Journal of Bone and Mineral Research, 2005. 20(9): p. S5-S5.
127. Lee, M.H., et al., Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. Journal of Biological Chemistry, 2005. 280(42): p. 35579-35587.
128. Nakashima, K., et al., The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation. Cell, 2002. 108(1): p. 17-29.
129. Pratap, J., et al., Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Research, 2003. 63(17): p. 5357-5362.
130. Kim, Y.J., et al., The bone-related Zn finger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene, 2006. 366(1): p. 145-151.
131. Selvamurugan, N., et al., Parathyroid hormone regulates the rat collagenase-3 promoter in osteoblastic cells through the cooperative interaction of the activator protein-1 site and the runt domain binding sequence. Journal of Biological Chemistry, 1998. 273(17): p. 10647-10657.
132. McCarthy, T.L., et al., Runt domain factor (Runx)-dependent effects on CCAAT/ enhancer-binding protein delta expression and activity in osteoblasts. J Biol Chem, 2000. 275(28): p. 21746-53.
133. Gutierrez, S., et al., CCAAT/enhancer-binding proteins (C/EBP) beta and delta activate osteocalcin gene transcription and synergize with Runx2 at the C/EBP element to regulate bone-specific expression. Journal of Biological Chemistry, 2002. 277(2): p. 1316-1323.
134. Xiao, G.Z., et al., Cooperative interactions between activating transcription factor 4 and Runx2/Cbfa1 stimulate osteoblast-specific osteocalcin gene expression. Journal of Biological Chemistry, 2005. 280(35): p. 30689-30696.
135. Yang, X.G., et al., ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: Implication for Coffin-Lowry syndrome. Cell, 2004. 117(3): p. 387-398.
136. Otto, F., et al., Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 1997. 89(5): p. 765-771.
137. Komori, T., Regulation of osteoblast differentiation by transcription factors. Journal of Cellular Biochemistry, 2006. 99(5): p. 1233-1239.
138. Puchacz, E., et al., Chromosomal localization of the human osteocalcin gene. Endocrinology, 1989. 124(5): p. 2648-50.
139. Cancela, L., et al., MOLECULAR-STRUCTURE, CHROMOSOME ASSIGNMENT, AND PROMOTER ORGANIZATION OF THE HUMAN MATRIX GLA PROTEIN GENE. Journal of Biological Chemistry, 1990. 265(25): p. 15040-15048.
140. Lee, N.K., et al., Endocrine regulation of energy metabolism by the skeleton. Cell, 2007. 130(3): p. 456-469.
141. Nomura, S., et al., Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J Cell Biol, 1988. 106(2): p. 441-50.
142. Kuhn, K.e.a., The Structural Organization of Type IV Collagen Ann N Y Acad Sci, 1985. 460: p. 14-24.
143. Ashizawa, N., et al., Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction. Journal of Clinical Investigation, 1996. 98(10): p. 2218-2227.
144. Murry, C.E., et al., MACROPHAGES EXPRESS OSTEOPONTIN DURING REPAIR OF MYOCARDIAL NECROSIS. American Journal of Pathology, 1994. 145(6): p. 1450-1462.
145. Lkeda, T., et al., Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest 1993. 92(6): p. 2814-20.
146. Uaesoontrachoon, K., et al., Osteopontin and skeletal muscle myoblasts: Association with muscle regeneration and regulation of myoblast function in vitro. International Journal of Biochemistry & Cell Biology, 2008. 40(10): p. 2303-2314.
147. Merry, K., et al., Expression of osteopontin mRNA by osteoclasts and osteoblasts in modelling adult human bone. J Cell Sci, 1993. 104(Pt 4): p. 1013-20.
148. Choi, S.T., et al., Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology, 2008. 47(12): p. 1775-1779.
149. Reinholt, F.P., et al., OSTEOPONTIN - A POSSIBLE ANCHOR OF OSTEOCLASTS TO BONE. Proceedings of the National Academy of Sciences of the United States of America, 1990. 87(12): p. 4473-4475.
150. Donovan, P.J. and J. Gearhart, The end of the beginning for pluripotent stem cells. Nature, 2001. 414(6859): p. 92-97.
151. Rosner, M.H., et al., A POU-DOMAIN TRANSCRIPTION FACTOR IN EARLY STEM-CELLS AND GERM-CELLS OF THE MAMMALIAN EMBRYO. Nature, 1990. 345(6277): p. 686-692.
152. Carlin, R., et al., Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reproductive Biology and Endocrinology, 2006. 4.
153. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-655.
154. Darr, H., Y. Mayshar, and N. Benvenisty, Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development, 2006. 133(6): p. 1193-1201.
155. Zaehres, H., et al., High-efficiency RNA interference in human embryonic stem cells. Stem Cells, 2005. 23(3): p. 299-305.
156. Chambers, I. and S.R. Tomlinson, The transcriptional foundation of pluripotency. Development, 2009. 136(14): p. 2311-2322.
157. Masui, S., et al., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 2007. 9(6): p. 625-U26.
158. Takeda, J., S. Seino, and G.I. Bell, HUMAN OCT3 GENE FAMILY - CDNA SEQUENCES, ALTERNATIVE SPLICING, GENE ORGANIZATION, CHROMOSOMAL LOCATION, AND EXPRESSION AT LOW-LEVELS IN ADULT TISSUES. Nucleic Acids Research, 1992. 20(17): p. 4613-4620.
159. Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005. 122(6): p. 947-956.
160. Looijenga, L.H.J., et al., POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Research, 2003. 63(9): p. 2244-2250.
161. Rodda, D.J., et al., Transcriptional regulation of Nanog by Oct4 and Sox2. Journal of Biological Chemistry, 2005. 280(26): p. 24731-24737.
162. Ho, M.H., et al., Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 2004. 25(1): p. 129-138.
163. Dai, W., et al., The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials, 2010. 31(8): p. 2141-2152.
164. Higuchi, A., et al., Differentiation ability of adipose-derived stem cells separated from adipose tissue by a membrane filtration method. Journal of Membrane Science, 2011. 366(1-2): p. 286-294.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2015-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明