參考文獻 |
Chapter 1
Siddiqui, M. D. N.; Garg, G.; Sharma, P. K. A short review on a novel approach in oral fast dissolving drug delivery system and their patents. Adv. Biol. Res. 2011, 5(6), 291-303.
Byn, S.; Morris, K.; Comella, S. Reducing time to market with a science-based management strategy. Pharm. Tech. 2005, Aug 01, 46-56.
Seppälä, K.; Heinämäki, J.; Hatara, J.; Seppälä, L.; Yliruusi, J. Development of a new method to get a reliable powder flow characteristics using only 1 to 2 g of powder. AAPS PharmSciTech. 2010, 11(1), 402-408.
Shahhet, L.; Al¬raghban, A.; Chehna, M. F. Improvement of the physicochemical properties of amoxicillin trihydrate powder by recrystallization at different pH values. Int. J. Pharm. Pharm. Sci. 2011, 3(3), 92100.
Kovačič, B.; Vrečer, F.; Planinšek, O. Spherical crystallization of drugs. Acta Pharm. 2012, 62(1), 1-14.
Maghsoodi, M. How spherical crystallization improves direct tableting properties: A review. Adv. Pharm. Bull. 2012, 2(2), 253-257.
Mahanty, S.; Sruti, J.; Patra, Ch. N.; Rao, M. E. B. Particle design of drugs by spherical crystallization techniques. Int. J. Pharm. Sci. Nanotech. 2010, 3(2), 912-918.
Yadav, A. V.; Shete, A. S.; Dabke, A. P.; Kulkarni, P. V.; Sakhare, S. S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 2009, 71(4), 359-370.
Nokhodchi, A.; Maghsoodi, M.; Hassanzadeh, D. An improvement of physicomechanical properties of carbamazepine crystals. Iran. J. Pharm. Res. 2007, 6(2), 83-93.
Rasenack, N.; Müller, B. W. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm. Res. 2002, 19(12), 1894-1900.
Joshi, J. T. A. Review on micronization techniques. J. Pharm. Sci. Tech. 2011, 3(7), 651-681.
Saleem, I. Y.; Smyth, H. D. C. Micronization of a soft material: Air-jet and micro-ball milling. AAPS PharmSciTech. 2010, 11(4), 1642-1649.
Khadkaa, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J. T.; Kim, H.; Cho, J. M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharmacol. 2014, 9(6), 304-316.
Maghsoodi, M. Effect of process variables on physicomechanical properties of the agglomerates obtained by spherical crystallization technique. Pharm. Dev. Technol. 2011, 16(5), 474-482.
Cantora, S. L.; Kothari, S.; Koo, O. M. Y. Evaluation of the physical and mechanical properties of high drug load formulations: Wet granulation vs. novel foam granulation. Powder Technol. 2009, 195(1), 15-24.
Sakr, W. F.; Ibrahim, M. A.; Alanazi, F. K.; Sakr, A. A. Upgrading wet granulation monitoring from hand squeeze test to mixing torque rheometry. Saudi Pharm. J. 2012, 20(1), 9-19.
Mangwandi, C.; Adams, M. J.; Hounslow, M. J.; Salman, A. D. Effect of batch size on mechanical properties of granules in high shear granulation. Powder Technol. 2011, 206(1-2), 44-52.
Rajniak, P.; Mancinelli, C.; Chern, R. T.; Stepanek, F.; Farber L.; Hill, B. T. Experimental study of wet granulation in fluidized bed: Impact of the binder properties on the granule morphology. Int. J. Pharm. 2007, 334(1-2), 92-102.
Hansuld E. M.; Briens, L. A review of monitoring methods for pharmaceutical wet granulation. Int. J. Pharm. 2014, 472(1-2), 192-201.
Yoshinari, T.; Forbes, R. T.; York P.; Kaishima, Y. Moisture induced polymorphic transition of mannitol and its morphological transformation. Int. J. Pharm. 2002, 247(1-2), 69-77.
Guo, Z.; Ma, M.; Wang, T.; Chang, D.; Jiang, T.; Wang, S. A kinetic study of the polymorphic transformation of nimodipine and indomethacin during high shear granulation. AAPS PharmSciTech. 2011, 12(2), 610-619.
Morin, G.; Briens, L. A comparison of granules produced by high-shear and fluidized-bed granulation methods. AAPS PharmSciTech. 2014, 15(4), 1039-1048.
Kaishima, Y.; Okumura, M.; Takenaka, H. Spherical crystallization: Direct spherical agglomeration of salicylic acid crystals during crystallization. Science 1982, 216(4550), 1127-1128.
Patil, S. V.; Sahoo, S. K. Pharmaceutical overview of spherical crystallization. Der. Pharmacia. Lettre. 2010, 2(1), 421-426.
Garg, J.; Khatry, S.; Arora, S. Spherical crystallization: An overview. Int. J. Pharm. 2012, 4(1), 1909-1928.
Patil, S. V.; Sahoo, S. K. Improvement in compressibility, flowability and drug release of glibenclamide by spherical crystallization with additives. Dig. J. Nanomater. Bios. 2011, 6(4), 1463-1477.
Kulkarni, P. K.; Dixit, M.; Jain, A. Spherical agglomeration of naproxan by solvent change method. S. J. Pharm. Sci. 2011, 4(1), 1-8.
Tapas, A. R.; Kawtikwar, P. S.; Sakarkar, D. M. Enhanced dissolution rate of felodipine using spherical agglomeration with inutec SP1 by quasi emulsion solvent diffusion method. Res. Pharm. Sci. 2009, 4(2), 77-84.
Dixit, M.; Kulkarni, P. K.; Vaghela, R. S. Effect of different crystallization techniques on the dissolution behavior of ketoprofen. Trop. J. Pharm. Res. 2013, 12 (3), 317-322.
Gupta, V. R.; Mutalik, S.; Patel, M. M.; Jani, G. K. Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties. Acta Pharm. 2007, 57(2), 173-184.
Patel, S.; Patel, K. R.; Patel, N. M. Spherical crystallization: An overview. Int. J. Univers. Pharm. Bio. Sci. 2013, 2(1), 184-195.
Pandey, S.; Patil, A. T. Preparation, evaluation and need of spherical crystallization in case of high speed direct tableting. Curr. Drug Deliv. 2014, 11(2), 179-190.
Chow, A. H. L.; Leung, M. W. M. A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders. Drug Dev. Ind. Pharm. 1996, 22(4), 357-371.
Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical crystallization for lean solid-dose manufacturing (Part I). Pharm. Technol. 2010, 34(4), 72-75.
Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical crystallization for lean solid-dosage manufacturing (Part II). Pharm. Technol. 2010, 34(4), 88-103.
Katta, J.; Rasmuson, Å. C. Spherical crystallization of benzoic acid. Int. J. Pharm. 2008, 348(1-2), 61-69.
Thati, J.; Rasmuson, Å. C. On the mechanisms of formation of spherical agglomerates. Eur. J. Pharm. Sci. 2011, 42(4), 365-379.
Held, K. D.; Epp, E. R.; Clark, E. P.; Biaglow, J. E. Effect of dimethyl fumarate on the radiation sensitivity of mammalian cells in vitro. Radiat. Res. 1988, 115(3), 495-502.
Mrowietz, U.; Altmeyer, P.; Bieber, T.; Röcken, M.; Schopf, R. E.; Sterry, W. Treatment of psoriasis with fumaric acid esters (Fumaderm®). J. Dtsch. Dermatol. Ges. 2007, 5(8), 716-717.
Meissner, M.; Valesky, E. M.; Kippenberger, S.; Kaufmann, R. Dimethyl fumarate-only an anti-psoriatic medication?. J. Dtsch. Dermatol. Ges. 2012, 10(11), 793-801.
Jarvis, L. M. The year in new drugs. C&EN 2014, 92(4), 10-13.
Kubal, G.; Meyer, D. J.; Norman, R. E.; Sadler, P. J. Investigations of glutathione conjugation in vitro by 1H NMR spectroscopy. Uncatalyzed and glutathione transferase-catalyzed reactions. Chem. Res. Toxicol. 1995, 8(5), 780-791.
Schmidt, T. J.; Ak, M.; Mrowietz, U. Reactivity of dimethyl fumarate and methylhydrogen fumarate towards glutathione and N-acetyl-l-cysteine-Preparation of S-substituted thiosuccinic acid esters. Bio. Org. Med. Chem. 2007, 15(1), 333-342.
Chapter 2
Farnand, J. R.; Smith, H. M.; Puddington, I. E. Spherical agglomeration of solids in liquid suspension. Can. J. Chem. Eng. 1961, 39(4), 94-97.
Sirianni, A. F.; Capes, C. E.; Puddington, I. E. Recent experience with the spherical agglomeration process. Can. J. Chem. Eng. 1969, 47(2), 166-170.
Kawashima, Y.; Capes, C. E. An experimental study of the kinetics of spherical agglomeration in as stirred vessel. Powder Technol. 1974, 10(1-2), 85-92.
Kawashima, Y.; Capes, C. E. Further studies of the kinetics of spherical agglomeration in a stirred vessel. Powder Technol. 1976, 13(2), 279-88.
Kawashima, Y.; Aoki, S.; Takenaka, H. Spherical agglomeration of aminophylline crystals during reaction in liquid by the spherical crystallization technique. Chem. Pharm. Bull. 1982, 30(5), 1900-1902.
Lasagabaster, A.; Martin, C.; Goni, M. M. Preparation of spherically agglomerated crystals of the 3,5-diglucoside of cyaniding (CYANIN). J. Chem. Tech. Biotechnol. 1994, 60(4), 397-403.
Bausch, A.; Leuenberger, H. Wet spherical agglomeration of proteins as a new method to prepare parenteral fast soluble dosage forms. Int. J. of Pharm. 1994, 101(1-2), 63-70.
Sadowski, Z. Selective spherical agglomeration of fine salt type mineral particles in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 1995, 96(3), 277-285.
Sutherland, J. P. The agglomeration of aqueous suspensions of graphite. Can. J. Chem. Eng. 1962, 40(12), 268-272.
Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.L.; Lee, S. W.; Hu, J. C.; Chen, L. T. Stabilization and spheroidization of ammonium nitrate: Co-crystallization with crown ethers and spherical crystallization by solvent screening. Chem. Eng. J. 2013, 225(1), 809-817.
Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical crystallization for lean solid-dose manufacturing (Part I). Pharm. Technol. 2010, 34(4),72-75
Maghsoodi, M. Effect of process variables on physicomechanical properties of the agglomerates obtained by spherical crystallization technique. Pharm. Dev. Technol. 2011, 16(5), 474-482.
Huang, A. Y.; Berg, J. C. Gelation of liquid bridges in spherical agglomeration. Colloids Surf. A Physicochem. Eng. Asp. 2003, 215(1-3), 241-252.
Kovačič, B.; Vrečer, F.; Planinšek, O. Spherical crystallization of drugs. Acta Pharm. 2012, 62(1), 1-14.
Kawashima, Y.; Niwa, T.; Handa, T.; Takeuchi, H.; Iwamoto, T.; Itoh, K. Preparation of controlled-release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion method. J Pharm Sci. 1989, 78(1), 68-72.
Ghenge, G. R.; Pande, S. D.; Birari, T. K.; Jejurkar, L. S.; Ahmad A. An overview to spherical crystalisation and its evaluation. Int. J. App. Pharm. 2011, 3(3), 1-6.
Mastai, Y. Advances in crystallization processes. InTech, Rijeka, 2012; Chapter 25, pp. 633-648.
Garg, J.; Khatry, S.; Arora, S. Spherical crystallization: An overview. Int. J. Pharm. 2012, 4(1), 1909-1928.
Nocent, M.; Bertocchi, L.; Espitalier, F.; Baron, M.; Couarraze, G. Definition of a solvent system for spherical crystallization of salbutamol sulfate by quasi-emulsion solvent diffusion (QESD) method. J. Pharm. Sci. 2001, 90(10), 1620-1627.
Ueda, M.; Nakamura, Y.; Makita, H.; Imasato, Y.; Kawashima, Y. Particle design of enoxacin by spherical crystallization technique. I. Principle of ammonia diffusion system (ADS). Chem. Pharm. Bull. 1990, 38(9), 2537-2541.
Puechagut, H. G.; Bianchotti, J.; Chiale, C. A. Preparation of norfloxacin spherical agglomerates using the ammonia diffusion system. J. Pharm. Sci. 1998, 87(4), 519-523.
Gohel, M. C.; Parikh, R. K.; Shah, H.; Dubey, R. R. Improvement in flowability and compressibility of ampicillin trihydrate by spherical crystallization. Indian J. Pharm. Sci. 2003, 65(6), 634-637.
Viswanathan, C. L.; Kulkarni, S. K.; Kolwankar, D. R. Spherical agglomeration of mefenamic acid and nabumetone to improve micromeritics and solubility: A technical note AAPS PharmSciTech. 2006, 7(2), E122-E125.
Bharti, N.; Bhandari, N.; Sharma, P.; Singh, K.; Kumar, A. Spherical crystallization: A novel drug delivery approach. Asian J. Biomed. Pharm. Sci. 2013, 3(18), 10-16.
Kawashima, Y.; Handa, T.; Takeuchi, H.; Okumura, M.; Katou, H.; Nagata, O. Crystal modification of phenytoin with polyethylene glycol for improving mechanical strength, dissolution rate and bioavailability by a spherical crystallization technique. Chem. Pharm. Bull. 1986, 34(8), 3376-3383.
Pawar, A. P.; Paradkar, A. R.; Kadam, S. S.; Mahadik, K. R. Crystallo-co-agglomeration: A novel technique to obtain ibuprofen-paracetamol agglomerates. AAPS PharmSciTech. 2004, 5(3), 57-64.
Thati, J.; Rasmuson, Å. C. On the mechanisms of formation of spherical agglomerates. Eur. J. Pharm. Sci. 2011, 42(4), 365-379.
Amaro-González, D., Biscans, B. Spherical agglomeration during crystallization of an active pharmaceutical ingredient. Powder Technol. 2002, 128(2-3), 188-194.
Thati, J.; Rasmuson, Å. C. Particle engineering of benzoic acid by spherical agglomeration. Eur. J. Pharm. Sci. 2012, 45(5), 657-667.
Blandin, A. F.; Mangin, D.; Rivoire, A.; Klein, J. P.; Bossoutrot, J. M. Agglomeration in suspension of salicylic acid fine particles: Influence of some process parameters on kinetics and agglomerate final size. Powder Technol. 2003, 130(1-3), 316-323.
Kulkarni, P. K.; Dixit M.; Jain A. Spherical agglomeration of naproxan by solvent change method. S. J. Pharm. Sci. 2011, 4(1), 1-8.
Maghsoodi, M. Effect of process variable on physicomechanical properties of the agglomerates obtained by spherical crystallization technique. Pharm. Dev. Technol. 2011, 16(5), 474-482.
Subero-Couroyera, C.; Mangina, D.; Rivoireb, A.; Blandinc, A. F.; Kleina, J. P. Agglomeration in suspension of salicylic acid fine particles: Analysis of the wetting period and effect of the binder injection mode on the final agglomerate size. Powder Technol. 2006, 161(2), 98-109.
Kawashima, Y.; Kurachi, Y.; Takenaka, H. Preparation of spherical wax matrices of sulfamethoxazole by wet spherical agglomeration technique using a CMSMPR agglomerator. Powder Technol. 1982, 32(2), 155-161.
Maghsoodi, M.; Yari, Z. Effect of temperature on wet agglomeration of crystals. Iran J. Basic Med. Sci. 2014, 17(5), 344-350.
Chapter 3
Zhang, H.; Xu, X.; Mu, H.; Nilsson, J.; Adler-Nissen, J. Lipozyme IM-catalyzed interesterification for the production of margarine fats in a 1 kg scale stirred tank reactor. Eur. J. Lipid Sci. Technol. 2000, 102(6), 411-418.
Blandin, A. F.; Mangin, D.; Subero-Couroyer, C.; Rivoire, A.; Klein, J. P.; Bossoutrot, J. M. Modelling of agglomeration in suspension: Application to salicylic acid microparticles. Powder Technol. 2005, 156(1), 19-33.
Kawashima, Y.; Cui, F.; Takeuchi, H.; Niwa, T.; Hino, T.; Kiuchi, K. Improvements in flowability and compressibility of pharmaceutical crystals for direct tabletting by spherical crystallization with a two-solvent system. Powder Technol. 1994, 78(2), 151-157.
Bos, A. S.; Zuiderweg, F. J. Size of agglomerates in batch wise suspension agglomeration. Chem. Eng. Res. Des. 1987, 65(2), 187-194.
Kawashima, Y.; Capes, C. E. Experimental study of the kinetics of spherical agglomeration in as stirred vessel. Powder Technol. 1974, 10(1-2), 85-92.
Couper, J. R.; Penney, W. R.; Fair, J. R.; Walas, S. M. Chemical process equipment: Selection and design. 3rd Ed.; Elsevier Inc., Waltham, 2012; Chapter 10, pp. 277-327.
Uhl, V. W.; Gray, J. B. Mixing, theory and practice. Academic Press, New York, 1966; Chapter 3, pp. 112-176.
Myers, K. J.; Reeder, M. F.; Fasano, J. B. Optimize mixing by using the proper baffles CEP February 2002, pp. 42-47. http://people.clarkson.edu/~wwilcox/Design/mixopt.pdf
McCabe, W. L.; Smith, J. C.; Harriott, P. Unit operations of chemical engineering. 7th Ed.; McGraw-Hill Inc., New York, 2005; Chapter 9, pp. 244-293.
Zweitering, Th. N. Suspension of solid particles in liquids by agitators. Chem. Eng. Sci. 1958, 8(3-4), pp. 244-253.
Threlfall, T. L. Analysis of organic polymorphs: A review. Analyst. 1995, 120(10), 2435-2460.
Yu, L.; Reutzil, S. M.; Stephenson, G. A. Physical characterization of polymorphic drugs: An integrated characterization strategy. PSTT 1998, 1(3), 118-127.
Grant, D. J. W. Polymorphism in pharmaceutical solids. 2nd Ed.; Marcel Dekker Inc., New York, 1999; Chapter 1, pp. 1-33.
Lee, T.; Lin, M. S. Sublimation point depression of tris (8-hydroxyquinoline) aluminum (III) (Alq3) by crystal engineering. Cryst. Growth Des. 2007, 7(9), 1803-1810.
Nichols, G.; Frampton, C. S. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution. J. Pharm. Sci. 1998, 87(6), 684-693.
Giron, D. Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates. Thermochim. Acta 1995, 248(2), 1-59.
El-Khateeb, S. Z.; Amer, S. M.; Razek, S. A. A.; Amer, M. M. Stability-indicating methods for the determination of cimetidine using derivative and fourier-transform infrared spectrophotometry Spectro. Lett. 1998, 31(7), 1415-1429.
Cölle, M.; Gmeiner, J.; Milius, W.; Hillebrecht, H.; Brütting, W. Preparation and characterization of blue-luminescent tris(8-hydroxyquinoline)-aluminum (Alq3). Adv. Funct. Mater. 2003, 13(2), 108-112.
Lee, T.; Hsu, F. B. A cross-performance relationship between Carr′s index and dissolution rate constant: The study of acetaminophen batches. Drug Dev. Ind. Pharm. 2007, 33(11), 1273-1284.
Lee, T.; Su, Y. C.; Hou, H. J.; Hsieh, H. Y. Spherical crystallization for lean solid-dose manufacturing (Part I). Pharm. Technol. 2010, 34(4), 72-75.
Thati, J.; Rasmuson, Å. C. On the mechanisms of formation of spherical agglomerates. Eur. J. Pharm. Sci. 2011, 42(4), 365-379.
Grey, R. O.; Beddow, J. K. On the Hausner ratio and its relationship to some properties of metal powders. Powder Technol. 1969, 2(6), 323-326.
Chikhale, E. Clinical pharmacology and biopharmaceutics review. Center for Drug Evaluation and Research, Food and Drug Administration 2012 February. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204063Orig1s000ClinPharmR.pdf
Rouessac, F.; Rouessac, A. Infrared Apectroscopy. 1st Ed.; John Willy & Sons, Chichester, 2001; Chapter 10, pp. 170-173.
Giron, D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J. Therm. Anal. Calorim. 2001, 68(2), 335-357.
Giron, D. Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates. Thermochim. Acta 1995, 248(2), 1-59.
Gotoh, K.; Masuda, H.; Higashitani, K. Powder technology hand book. 2nd Ed.; Marcel Dekker Inc., New York, 1997; Chapter 5, pp. 720-730.
Gotoh, K.; Masuda, H.; Higashitani, K. Powder Technology Hand Book. 2nd Ed.; Marcel dekker Inc., New York, 1997; Chapter 3, pp. 413-423.
Braatz, R. D.; Fujiwara, M.; Ma, D. L.; Togkalidou, T. Simulation and new sensor technologies for industrial crystallization: A review. Int. J. Mod. Phys. 2002, 16(346), 346-353.
Rasenack, N.; Müller, B. W. Crystal habit and tableting behavior. Int. J. Pharm. 2002, 244(1-2), 45-57.
Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of instrumental analysis. 5th Ed.; Thomson Learning, Mississippi, 2001; Chapter 21, pp. 549-553.
Reed-hill, R. E. Physical metallurgy principles. 3rd Ed.; PWS Publishing Company, Boston, 1994; Chapter 2, pp. 53-60.
Chow, A. H. L.; Leung, M. W. M. A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders. Drug Dev. Ind. Pharm. 1996, 22(4), 357-371.
Blandin, A. F.; Mangin, D.; Rivoire, A.; Klein, J. P.; Bossoutrot, J. M. Agglomeration in suspension of salicylic acid fine particles: Influence of some process parameters on kinetics and agglomerate final size. Powder Technol. 2003, 130(1-3), 316-323.
Bharti, N.; Bhandari, N.; Sharma, P.; Singh, K.; Kumar, A. Spherical crystallization: A novel drug delivery approach. Asian J. Biomed. Pharm. Sci. 2013, 3(18), 10-16.
Farid, M.; El-Setouhy, D.; El-Bayomi, T.; El-Nabarawi, M. Pharmaceutical overview of spherical crystallization as an up to date method to enhance the solubility and bioavailability of poorly water-soluble drugs. IJUPBS 2014, 3(1), 225-244.
Smith, G. W.; Tavlarides, L. L.; Placek, J. Turbulent flow in stirred tanks: Scale-up computations for vessel hydrodynamics. Chem. Eng. Comm. 1990, 93(1), 49-73.
Maghsoodi, M. Effect of process variable on physicomechanical properties of the agglomerates obtained by spherical crystallization technique. Pharm. Dev. Technol. 2011, 16(5), 474-482.
|