博碩士論文 102324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.17.6.75
姓名 彭依加  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 人類幹細胞培養於熱敏感奈米片段材料之研究
(Human stem cell culture on biomaterials immobilized with thermoresponsive nanobrush)
相關論文
★ 抗癌藥物的鑑定性用於分析大腸癌中癌幹細胞之研究★ 利用具有奈米片段的生醫材料進行純化及去除癌症幹細胞
★ 羊水間葉幹細胞培養於細胞外間質及材料硬度/彈性表面,其分化能力及多能性之研究★ 人類脂肪幹細胞的膜純化法與分化能力研究
★ 人類羊水間葉幹細胞培養於具有奈米片段與最佳表面硬度的生醫材料,其增殖與成骨分化能力★ 多能幹細胞在無異種條件下分化為間充質幹細 胞的生物材料比較研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 熱敏感材料表面因其熱敏感材料之低臨界溶液溫度 (LCST) 之特性使其成為細胞培養目前最引人矚目的一項技術。在細胞繼代時,我們可排除酵素的繼代方法而減少對細胞的傷害,改由降低溫度至4℃,使細胞成層(cell sheet)從表面脫附。這個設計主要有四個優點:一、建立一個非異種的培養系統,在人類幹細胞臨床使用上,可排除免疫排斥的疑慮;二、使用非酵素傷害的機制,改由降低溫度來達到細胞的脫附效果;三、此培養盤是利用高分子塗佈製成,在溫度改變之後並不會破壞其表面的構造,故可以重複使用,降低成本;四、以高分子塗佈的培養表面可做成微載體(Microcarrier),培養幹細胞於生物反應器(Bioreactor)中,使其大量培養以應用至醫學組織與器官之培養與移植。此系統主要設計對象是針對人類幹細胞,包含人類胚胎幹細胞(hESCs)以及人類脂肪幹細胞(hADSCs)。我們使用的高分子尾端都接上一個聚苯乙烯端(polystyrene anchor),聚苯乙烯端可穩定的和培養盤(TCPS)結合,而另一端則分別接上:(1) 熱敏感材料poly(N-isopropyl acrylamide), PNIPAAm; (2) 具有生物相容性質的polyethylene glycol methacrylate (PEGMA) ;以及 (3) polyacrylic acid (PAA) 可利用其上之羧基與寡肽鏈結合 (oligo-vitronectin)。 這些塗佈的共聚物具有很小的分子量分布(小於1.6),而後我們利用NMR以及FTIR來檢測其表面特性,共聚物塗佈的表面密度由XPS 以及 XPR來檢測。
我們將人類脂肪幹細胞培養在此共聚物塗佈的熱敏感奈米片段表面上以獲得其最適條件,其最適條件包含高貼附率以及高脫附效率。在低溫處理的過程中,最適化條件可達80% 之脫附效率,而控制條件TCPS盤上只有少於20%的細胞脫附。我們進而將此最適化條件培養人類胚胎幹細胞,人類胚胎幹細胞不只被成功培養於熱敏感奈米片段表面且他們可以維持其多能性。往後,我們希望能夠將此系統轉移至3D培養,利用先前所述之微載體,使其能培養及放大細胞量,在生物醫學應用方面有所貢獻。
摘要(英) Thermoresponsive surface prepared using thermoresponsive polymers with low critical solution temperatures (LCSTs) is attractive candidates for cell culturing because cells can be detached from the surface without applying an enzymatic digestion method and, instead, by decreasing the temperature, e.g., to 4 °C, which enables cell aggregates or cell sheets to be obtained. In this study, the thermoresponsive nanobrush surfaces are designed for human stem cell culture (human adipose-derived stem cells [hADSCs] and human embryonic stem cells [hESCs]). Using RAFT polymerization, I prepared the coating copolymers having polystyrene anchor and (a) thermoresponsive poly(N-isopropyl acrylamide), PNIPAAm, (b) biocompatible polyethylene glycol methacrylate (PEGMA), and (c) polyacrylic acid (PAA) where bioactive oligopeptide (oligo-vitronectin) can be conjugated via carboxylic acid of PAA. The coating copolymers had narrow molecular weight distribution (PDI is less than 1.8) and were characterized by NMR and FTIR. The coating surface density was analyzed by XPS and SPR measurements. hADSCs were cultured on the surface coated with copolymers containing PNIPAAm, PEGMA and PAA conjugated with oligo-vitronectin. I investigated the optimization of hADSCs attachment and detachment with high efficiency in cooling process. While less than 20% of hESCs were able to detach from the commercially available control dishes, TCPS, hESCs can be cultured and detached from thermoresponsive nanobrush surfaces and maintained the pluripotency. Furthermore, hPSCs culture on thermorespsonsive nanobrush surfaces can be applied to 3D culture system for clinical application by introducing the microcarriers, which can be coated with copolymers developed in this study.
關鍵字(中) ★ 熱敏感材料
★ 人類幹細胞
關鍵字(英) ★ stem cell
★ thermoresponsive
論文目次 Chapter 1. Introduction 1
1-1 Cell therapy for regenerative medicine 1
1-1-1 Temperature-responsive cell culture surface……………………………… 2
1-1-2 Rapid recovery of cell sheets and cell sheet manipulation technology 5
1-1-3 Functionalization of temperature-responsive cell culture surfaces 8
1-1-4 Micropatterned temperature-responsive polymer brush surfaces for fabricating cell sheets with well-controlled orientational structures by RAFT 11
1-2 Stem cells 12
1-2-1 Self renewal and lineage plasticity of stem cells 14
1-2-2 Embryonic stem cells (ESCs) 16
1-2-3 Induced pluripotent stem cells 16
1-2-4 Adult stem cells 18
1-3 Microenvironment effect on human pluripotent stem cells 20
1-3-1 Environmental factors 21
1-3-2 Chemically defined materials for stem cell culture 23
1-4 Three-dimensional (3D) culture strategies for hPSCs bioprocesses 34
1-4-1 3D Culture of hPSCs on microcarriers 36
1-4-2 3D Culture of hPSCs entrapped in hydrogels (Microcapsules) 37
1-5 Characterization of pluripotent stem cells 41
1-5-1 Colony formation 41
1-5-2 Alkali phosphatase activity 41
1-5-3 Pluripotent gene expression 43
1-5-4 Pluripotent protein expression 43
1-5-5 Differentiation ability 43
1-5 Immunofluorescence 46
Chapter 2. Materials and Methods 48
2-1 Materials 48
2-1-1 Cells and culture media 48
2-1-2 Chemicals 48
2-2 Methods 52
2-2-1 Cell isolation of hADSCs 52
2-2-2 Preparation of the thermoresponsive nanobrush surfaces. 54
2-2-3 Culture medium preparation 55
2-2-4 10x Phosphate buffer saline (PBS) preparation 56
2-2-5 Cell culture 56
2-2-6 XPS analysis of nanobrush surfaces 58
2-2-7 Cell adhesion and detachment 59
2-2-8 Colony differentiation ratio 60
2-2-9 Cell proliferation assay 60
2-2-10 Immunofluorescence 62
Chapter 3 Results and Discussion 66
3-1 Characterization of thermoresponsive nanobrush surfaces 66
3-2-1 Effect of attachemnt/detachment of hADSCs on the surface having different chain length of PS-b-PAA and PS-b-PNIPAAM 74
3-2-2 Effect on varing ratio of PS-b-PNIPAAM and PS-b-PEGMA in hADSCs 78
3-2-3 Effect of surface coverage of PS-b-PAA on attachment/detachment of hADSCs 84
3-3 hESCs attachment/detachment behavior on the thermoresponsive nanobrush surfaces 86
3-3-1 Effect on concentration gradient of ECM grafted in hESCs. 86
3-3-2 Effect of attachemnt/detachment of hESCs on different chain length of PS-b-PEGMA 87
3-4 Intelligent partial detachment of stem cells on thermoresponsive surface 93
3-4-1. Partial detachment of hADSCs on thermoresponsive surface 94
3-4-2. Partial detachment of hESCs on thermoresponsive surface 98
3-5 Characterization of hADSCs and hESCs on thermoresponsive surface 103
3-5-1 Cell viability analysis of hADSCs- LIVE/DEAD assay and MTT assay 103
3-5-2 Immunochemistry analysis of hADSCs 105
3-5-3Characterization of hESCs-Immunochemistry analysis 108
Chapter 4 Conclusions 111
Supplemantal data 113
References 124
參考文獻 References
1. Serra, M., et al., Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 2012. 30(6): p. 350-359.
2. Yamato, M., et al., Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Progress in Polymer Science, 2007. 32(8–9): p. 1123-1133.
3. Drucker-Colin, R. and L. Verdugo-Diaz, Cell transplantation for Parkinson′s disease: Present status. Cellular and Molecular Neurobiology, 2004. 24(3): p. 301-316.
4. Bjorklund, A. and O. Lindvall, Cell replacement therapies for central nervous system disorders. Nature Neuroscience, 2000. 3(6): p. 537-544.
5. Bachoud-Levi, A.C., et al., Effect of fetal neural transplants inpatients with Huntington′s disease 6 years after surgery: a long-term follow-up study. Lancet Neurology, 2006. 5(4): p. 303-309.
6. Ohashi, K., F. Park, and M.A. Kay, Hepatocyte transplantation: clinical and experimental application. Journal of Molecular Medicine-Jmm, 2001. 79(11): p. 617-630.
7. Fox, I.J. and J.R. Chowdhury, Hepatocyte transplantation. American Journal of Transplantation, 2004. 4: p. 7-13.
8. Durdu, S., et al., Autologous bone-marrow mononuclear cell implantation for patients with Rutherford grade II-III thromboangiitis obliterans. Journal of Vascular Surgery, 2006. 44(4): p. 732-739.
9. Nanjundappa, A., et al., Cell transplantation for treatment of left-ventricular dysfunction due to ischemic heart failure: from bench to bedside. Expert Rev Cardiovasc Ther, 2007. 5(1): p. 125-31.
10. Engelmann, M.G. and W.M. Franz, Stem cell therapy after myocardial infarction: Ready for clinical application? Current Opinion in Molecular Therapeutics, 2006. 8(5): p. 396-414.
11. Gao, L.R., et al., Effect of intracoronary transplantation of autologous bone marrow-derived mononuclear cells on outcomes of patients with refractory chronic heart failure, secondary to ischemic cardiomyopathy. American Journal of Cardiology, 2006. 98(5): p. 597-602.
12. Beeres, S., et al., Effect of intramyocardial injection of autologous bone marrow-derived mononuclear cells on perfusion, function, and viability in patients with drug-refractory chronic ischemia. Journal of Nuclear Medicine, 2006. 47(4): p. 574-580.
13. Hagege, A.A., et al., Skeletal myoblast transplantation in ischemic heart failure - Long-term follow-up of the first phase I cohort of patients. Circulation, 2006. 114: p. I108-I113.
14. Menasche, P., Myoblast transplantation: feasibility, safety and efficacy. Annals of Medicine, 2002. 34(5): p. 314-315.
15. Menasche, P., Skeletal myoblast for cell therapy. Coronary Artery Disease, 2005. 16(2): p. 105-110.
16. Menasche, P., et al., Myoblast transplantation for heart failure. Lancet, 2001. 357(9252): p. 279-280.
17. Menasche, P., et al., Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology, 2003. 41(7): p. 1078-1083.
18. Del Priore, L.V., et al., Retinal pigment epithelial cell transplantation after subfoveal membranectomy in age-related macular degeneration: Clinicopathologic correlation. American Journal of Ophthalmology, 2001. 131(4): p. 472-480.
19. Shimizu, T., et al., Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003. 24(13): p. 2309-2316.
20. Yang, J., et al., Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials, 2005. 26(33): p. 6415-6422.
21. Gupta, S., et al., Entry and integration of transplanted hepatocytes in rat liver plates occur by disruption of hepatic sinusoidal endothelium. Hepatology, 1999. 29(2): p. 509-519.
22. Rajvanshi, P., et al., Efficacy and safety of repeated hepatocyte transplantation for significant liver repopulation in rodents. Gastroenterology, 1996. 111(4): p. 1092-1102.
23. Gagandeep, S., et al., Transplanted hepatocytes engraft, survive, and proliferate in the liver of rats with carbon tetrachloride-induced cirrhosis. Journal of Pathology, 2000. 191(1): p. 78-85.
24. Waymouth, C., To disaggregate or not to disaggregate, injury and cell disaggregation, transient or permanent? In Vitro, 1974. 10(1-2): p. 97-111.
25. Revel, J.P., P. Hoch, and D. Ho, Adhesion of culture cells to their substratum. Experimental Cell Research, 1974. 84(1–2): p. 207-218.
26. Osunkoya, B.O., F.C. Mottram, and M.J. Isoun, Synthesis and fate of immunological surface receptors on cultured burkitt lymphoma cells. International Journal of Cancer, 1969. 4(2): p. 159-165.
27. Yamada, N., et al., Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communications, 1990. 11(11): p. 571-576.
28. Okano, T., et al., A NOVEL RECOVERY-SYSTEM FOR CULTURED-CELLS USING PLASMA-TREATED POLYSTYRENE DISHES GRAFTED WITH POLY(N-ISOPROPYLACRYLAMIDE). Journal of Biomedical Materials Research, 1993. 27(10): p. 1243-1251.
29. Nakajima, K., et al., Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials, 2001. 22(11): p. 1213-1223.
30. Matsuda, N., et al., Tissue Engineering Based on Cell Sheet Technology. Advanced Materials, 2007. 19(20): p. 3089-3099.
31. Akiyama, Y., et al., Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir, 2004. 20(13): p. 5506-5511.
32. Kikuchi, A. and T. Okano, Nanostructured designs of biomedical materials: Applications of cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled Release, 2005. 101(1-3): p. 69-84.
33. Takei, Y.G., et al., DYNAMIC CONTACT-ANGLE MEASUREMENT OF TEMPERATURE-RESPONSIVE SURFACE-PROPERTIES FOR POLY(N-ISOPROPYLACRYLAMIDE) GRAFTED SURFACES. Macromolecules, 1994. 27(21): p. 6163-6166.
34. Yakushiji, T., et al., Graft Architectural Effects on Thermoresponsive Wettability Changes of Poly(N-isopropylacrylamide)-Modified Surfaces. Langmuir, 1998. 14(16): p. 4657-4662.
35. Fukumori, K., et al., Temperature-responsive glass coverslips with an ultrathin poly(N-isopropylacrylamide) layer. Acta Biomaterialia, 2009. 5(1): p. 470-476.
36. Tang, Z., Y. Akiyama, and T. Okano, Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering. Polymers, 2012. 4(3): p. 1478-1498.
37. Kwon, O.H., et al., Rapid cell sheet detachment from poly(N-isopropylacrylamide)-grafted porous cell culture membranes. Journal of Biomedical Materials Research, 2000. 50(1): p. 82-89.
38. Kaneko, Y., et al., Deswelling mechanism for comb-type grafted poly(N-isopropylacrylamide) hydrogels with rapid temperature responses. Polymer Gels and Networks, 1998. 6(5): p. 333-345.
39. Kaneko, Y., et al., Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules, 1998. 31(18): p. 6099-6105.
40. Bhatia, S.N., et al., Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. Faseb Journal, 1999. 13(14): p. 1883-1900.
41. Harimoto, M., et al., Cell sheet engineering: Intelligent polymer patterned surfaces for tissue engineered liver. Macromolecular Symposia, 2003. 195: p. 231-235.
42. Bae, Y.H., T. Okano, and S.W. Kim, Temperature dependence of swelling of crosslinked poly(N,N′-alkyl substituted acrylamides) in water. Journal of Polymer Science Part B: Polymer Physics, 1990. 28(6): p. 923-936.
43. Takei, Y.G., et al., TEMPERATURE-RESPONSIVE BIOCONJUGATES .2. MOLECULAR DESIGN FOR TEMPERATURE-MODULATED BIOSEPARATIONS. Bioconjugate Chemistry, 1993. 4(5): p. 341-346.
44. Iwata, H., et al., PREPARATION OF TEMPERATURE-SENSITIVE MEMBRANES BY GRAFT-POLYMERIZATION ONTO A POROUS MEMBRANE. Journal of Membrane Science, 1991. 55(1-2): p. 119-130.
45. Feil, H., et al., EFFECT OF COMONOMER HYDROPHILICITY AND IONIZATION ON THE LOWER CRITICAL SOLUTION TEMPERATURE OF N-ISOPROPYLACRYLAMIDE COPOLYMERS. Macromolecules, 1993. 26(10): p. 2496-2500.
46. Tsuda, Y., et al., Control of cell adhesion and detachment using temperature and thermoresponsive copolymer grafted culture surfaces. J Biomed Mater Res A, 2004. 69(1): p. 70-8.
47. Tsuda, Y., et al., The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials, 2005. 26(14): p. 1885-1893.
48. Takahashi, H., et al., Terminally Functionalized Thermoresponsive Polymer Brushes for Simultaneously Promoting Cell Adhesion and Cell Sheet Harvest. Biomacromolecules, 2012. 13(1): p. 253-260.
49. Nakayama, M. and T. Okano, Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules, 2005. 6(4): p. 2320-2327.
50. McCormick, C.L., et al., RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter, 2008. 4(9): p. 1760-1773.
51. Takahashi, H., et al., Micropatterned Thermoresponsive Polymer Brush Surfaces for Fabricating Cell Sheets with Well-Controlled Orientational Structures. Biomacromolecules, 2011. 12(5): p. 1414-1418.
52. Andrews, P.W., et al., Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: Opposite sides of the same coin. Biochemical Society Transactions, 2005. 33: p. 1526-1530.
53. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
54. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
55. Martin, M.J., et al., Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med, 2005. 11(2): p. 228-32.
56. Diehn, M., R.W. Cho, and M.F. Clarke, Therapeutic implications of the cancer stem cell hypothesis. Semin Radiat Oncol, 2009. 19(2): p. 78-86.
57. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
58. Taylor, R., Human Biotechnology as Social Challenge: An Interdisciplinary Introduction to Bioethics. Human Reproduction and Genetic Ethics, 2010. 14(1): p. 40.
59. Amit, M. and J. Itskovitz-Eldor, Derivation and spontaneous differentiation of human embryonic stem cells. Journal of Anatomy, 2002. 200(3): p. 225-232.
60. Carpenter, M.K., E. Rosler, and M.S. Rao, Characterization and differentiation of human embryonic stem cells. Cloning and Stem Cells, 2003. 5(1): p. 79-88.
61. Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nature Biotechnology, 2005. 23(6): p. 699-708.
62. Strulovici, Y., et al., Human embryonic stem cells and gene therapy. Molecular Therapy, 2007. 15(5): p. 850-866.
63. Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008. 26(1): p. 101-106.
64. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
65. Yu, J., et al., Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science, 2009. 324(5928): p. 797-801.
66. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
67. Chuang, C.K., et al., Baculovirus as a new gene delivery vector for stem cell engineering and bone tissue engineering. Gene Therapy, 2007. 14(19): p. 1417-1424.
68. Ratajczak, M.Z., et al., A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia, 2007. 21(5): p. 860-7.
69. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-9.
70. Subrammaniyan, R., et al., Application of autologous bone marrow mononuclear cells in six patients with advanced chronic critical limb ischemia as a result of diabetes: our experience. Cytotherapy, 2011. 13(8): p. 993-9.
71. Narasipura, S.D., et al., P-Selectin coated microtube for enrichment of CD34+ hematopoietic stem and progenitor cells from human bone marrow. Clin Chem, 2008. 54(1): p. 77-85.
72. Terai, S., et al., Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells, 2006. 24(10): p. 2292-8.
73. Lin, C.S., et al., Defining adipose tissue-derived stem cells in tissue and in culture. Histol Histopathol, 2010. 25(6): p. 807-15.
74. Smith, A.J., et al., Apoptotic susceptibility to DNA damage of pluripotent stem cells facilitates pharmacologic purging of teratoma risk. Stem Cells Transl Med, 2012. 1(10): p. 709-18.
75. Goldring, C.E., et al., Assessing the safety of stem cell therapeutics. Cell stem cell, 2011. 8(6): p. 618-628.
76. Montarras, D., et al., Direct isolation of satellite cells for skeletal muscle regeneration. Science, 2005. 309(5743): p. 2064-2067.
77. Krause, D.S., et al., Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 2001. 105(3): p. 369-377.
78. Mezey, E., et al., Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science, 2000. 290(5497): p. 1779-1782.
79. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-147.
80. Prockop, D.J., Marrow stromal cells as steam cells for nonhematopoietic tissues. Science, 1997. 276(5309): p. 71-74.
81. Torrente, Y., et al., Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells. Cell Transplantation, 2003. 12(1): p. 91-100.
82. Cossu, G. and P. Bianco, Mesoangioblasts - vascular progenitors for extravascular mesodermal tissues. Current Opinion in Genetics & Development, 2003. 13(5): p. 537-542.
83. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature biotechnology, 2010. 28(6): p. 611-5.
84. Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of biotechnology, 2010. 146(3): p. 143-6.
85. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
86. Azarin, S.M. and S.P. Palecek, Development of scalable culture systems for human embryonic stem cells. Biochemical Engineering Journal, 2010. 48(3): p. 378-384.
87. Ferreira, L.S., et al., Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials, 2007. 28(17): p. 2706-17.
88. Maia, J., et al., Controlling the Neuronal Differentiation of Stem Cells by the Intracellular Delivery of Retinoic Acid-Loaded Nanoparticles. Acs Nano, 2011. 5(1): p. 97-106.
89. Ao, A., J.J. Hao, and C.C. Hong, Regenerative Chemical Biology: Current Challenges and Future Potential. Chemistry & Biology, 2011. 18(4): p. 413-424.
90. Burdick, J.A. and F.M. Watt, High-throughput stem-cell niches. Nature Methods, 2011. 8(11): p. 915-916.
91. Bauwens, C.L., et al., Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells, 2008. 26(9): p. 2300-2310.
92. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-89.
93. Veraitch, F.S., et al., The impact of manual processing on the expansion and directed differentiation of embryonic stem cells. Biotechnology and Bioengineering, 2008. 99(5): p. 1216-1229.
94. Ezashi, T., P. Das, and R.M. Roberts, Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(13): p. 4783-4788.
95. Forsyth, N.R., et al., Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning and Stem Cells, 2006. 8(1): p. 16-23.
96. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
97. Michel, G., et al., The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 2010. 188(1): p. 82-97.
98. Abedin, M. and N. King, Diverse evolutionary paths to cell adhesion. Trends Cell Biol, 2010. 20(12): p. 734-42.
99. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
100. Meng, G., et al., Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells Dev, 2010. 19(4): p. 547-56.
101. Fu, X., et al., Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods, 2011. 17(9): p. 927-37.
102. Ilic, D., et al., Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 2012. 14(1): p. 122-8.
103. Hayashi, Y., et al., Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions. PLoS One, 2010. 5(11): p. e14099.
104. Swistowski, A., et al., Xeno-Free Defined Conditions for Culture of Human Embryonic Stem Cells, Neural Stem Cells and Dopaminergic Neurons Derived from Them. Plos One, 2009. 4(7).
105. Hernandez, D., L. Ruban, and C. Mason, Feeder-free culture of human embryonic stem cells for scalable expansion in a reproducible manner. Stem cells and development, 2011. 20(6): p. 1089-98.
106. Sugii, S., et al., Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci U S A, 2010. 107(8): p. 3558-63.
107. Kaupisch, A., et al., Derivation of vascular endothelial cells from human embryonic stem cells under GMP-compliant conditions: towards clinical studies in ischaemic disease. J Cardiovasc Transl Res, 2012. 5(5): p. 605-17.
108. Tsutsui, H., et al., An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun, 2011. 2: p. 167.
109. Meng, G., S. Liu, and D.E. Rancourt, Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev, 2012. 21(11): p. 2036-48.
110. Yoon, T.M., et al., Human embryonic stem cells (hESCs) cultured under distinctive feeder-free culture conditions display global gene expression patterns similar to hESCs from feeder-dependent culture conditions. Stem Cell Rev, 2010. 6(3): p. 425-37.
111. Hughes, C.S., et al., Proteomic analysis of extracellular matrices used in stem cell culture. Proteomics, 2011. 11(20): p. 3983-91.
112. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. Stem Cells, 2008. 26(9): p. 2257-2265.
113. Rajala, K., et al., Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Human Reproduction, 2007. 22(5): p. 1231-1238.
114. Manton, K.J., et al., A chimeric vitronectin: IGF-I protein supports feeder-cell-free and serum-free culture of human embryonic stem cells. Stem cells and development, 2010. 19(9): p. 1297-305.
115. Heng, B.C., et al., Translating Human Embryonic Stem Cells from 2-Dimensional to 3-Dimensional Cultures in a Defined Medium on Laminin- and Vitronectin-Coated Surfaces. Stem Cells and Development, 2012. 21(10): p. 1701-1715.
116. Yap, L.Y.W., et al., Defining a Threshold Surface Density of Vitronectin for the Stable Expansion of Human Embryonic Stem Cells. Tissue Engineering Part C-Methods, 2011. 17(2): p. 193-207.
117. Prowse, A.B., et al., Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials, 2010. 31(32): p. 8281-8.
118. Li, J.A., et al., Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases, 2010. 5(3): p. Fa132-Fa142.
119. Nishishita, N., et al., Generation of Virus-Free Induced Pluripotent Stem Cell Clones on a Synthetic Matrix via a Single Cell Subcloning in the Naive State. Plos One, 2012. 7(6).
120. Kim, B.S., et al., Design of artificial extracellular matrices for tissue engineering. Progress in Polymer Science, 2011. 36(2): p. 238-268.
121. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
122. Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010. 7(12): p. 989-U72.
123. Harb, N., T.K. Archer, and N. Sato, The Rho-Rock-Myosin Signaling Axis Determines Cell-Cell Integrity of Self-Renewing Pluripotent Stem Cells. Plos One, 2008. 3(8).
124. Carlson, A.L., et al., Microfibrous substrate geometry as a critical trigger for organization, self-renewal, and differentiation of human embryonic stem cells within synthetic 3-dimensional microenvironments. Faseb Journal, 2012. 26(8): p. 3240-3251.
125. Nagaoka, M., et al., Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. Bmc Developmental Biology, 2010. 10.
126. Stephenson, E., et al., Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nature protocols, 2012. 7(7): p. 1366-81.
127. Lu, H.F., et al., A 3D microfibrous scaffold for long-term human pluripotent stem cell self-renewal under chemically defined conditions. Biomaterials, 2012. 33(8): p. 2419-2430.
128. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-44.
129. Nandivada, H., et al., Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nature protocols, 2011. 6(7): p. 1037-43.
130. Irwin, E.E., et al., Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 2011. 32(29): p. 6912-6919.
131. Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
132. Zhang, R., et al., A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nature Communications, 2013. 4.
133. Mei, Y., et al., Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature materials, 2010. 9(9): p. 768-78.
134. Mahlstedt, M.M., et al., Maintenance of Pluripotency in Human Embryonic Stem Cells Cultured on a Synthetic Substrate in Conditioned Medium. Biotechnology and Bioengineering, 2010. 105(1): p. 130-140.
135. Nie, Y., et al., Scalable Culture and Cryopreservation of Human Embryonic Stem Cells on Microcarriers. Biotechnology Progress, 2009. 25(1): p. 20-31.
136. Kim, S., et al., A novel culture technique for human embryonic stem cells using porous membranes. Stem Cells, 2007. 25(10): p. 2601-9.
137. Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. Journal of Biotechnology, 2008. 133(1): p. 146-153.
138. Higuchi, A., et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules, 2004. 5(5): p. 1770-4.
139. Higuchi, A., et al., Temperature-dependent cell detachment on Pluronic gels. Biomacromolecules, 2005. 6(2): p. 691-6.
140. Tamura, A., et al., Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials, 2012. 33(15): p. 3803-12.
141. Saito, T., et al., Reversal of Diabetes by the Creation of Neo-Islet Tissues Into a Subcutaneous Site Using Islet Cell Sheets. Transplantation, 2011. 92(11): p. 1231-1236.
142. Wei, H., et al., Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 2009. 34(9): p. 893-910.
143. Pampaloni, F., E.G. Reynaud, and E.H.K. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology, 2007. 8(10): p. 839-845.
144. Mohamet, L., M.L. Lea, and C.M. Ward, Abrogation of E-Cadherin-Mediated Cellular Aggregation Allows Proliferation of Pluripotent Mouse Embryonic Stem Cells in Shake Flask Bioreactors. Plos One, 2010. 5(9).
145. Cukierman, E., R. Pankov, and K.M. Yamada, Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 2002. 14(5): p. 633-639.
146. Lund, A.W., et al., The Natural and Engineered 3D Microenvironment as a Regulatory Cue During Stem Cell Fate Determination. Tissue Engineering Part B-Reviews, 2009. 15(3): p. 371-380.
147. Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. Journal of Biotechnology, 2008. 138(1-2): p. 24-32.
148. Janssens, S., et al., Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 2006. 367(9505): p. 113-121.
149. Lunde, K., et al., Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. New England Journal of Medicine, 2006. 355(12): p. 1199-1209.
150. Burdick, J.A. and G. Vunjak-Novakovic, Engineered Microenvironments for Controlled Stem Cell Differentiation. Tissue Engineering Part A, 2009. 15(2): p. 205-219.
151. Cameron, C.M., W.-S. Hu, and D.S. Kaufman, Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnology and Bioengineering, 2006. 94(5): p. 938-948.
152. Aubry, L., et al., Improvement of Culture Conditions of Human Embryoid Bodies Using a Controlled Perfused and Dialyzed Bioreactor System. Tissue Engineering Part C-Methods, 2008. 14(4): p. 289-298.
153. Gerecht-Nir, S., S. Cohen, and J. Itskovitz-Eldor, Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnology and Bioengineering, 2004. 86(5): p. 493-502.
154. Yirme, G., et al., Establishing a Dynamic Process for the Formation, Propagation, and Differentiation of Human Embryoid Bodies. Stem Cells and Development, 2008. 17(6): p. 1227-1241.
155. Singh, H., et al., Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Research, 2010. 4(3): p. 165-179.
156. Amit, M., et al., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010. 6(2): p. 248-259.
157. Kehoe, D.E., et al., Scalable Stirred-Suspension Bioreactor Culture of Human Pluripotent Stem Cells. Tissue Engineering Part A, 2010. 16(2): p. 405-421.
158. Krawetz, R., et al., Large-Scale Expansion of Pluripotent Human Embryonic Stem Cells in Stirred-Suspension Bioreactors. Tissue Engineering Part C-Methods, 2010. 16(4): p. 573-582.
159. Niebruegge, S., et al., Generation of Human Embryonic Stem Cell-Derived Mesoderm and Cardiac Cells Using Size-Specified Aggregates in an Oxygen-Controlled Bioreactor. Biotechnology and Bioengineering, 2009. 102(2): p. 493-507.
160. Olmer, R., et al., Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research, 2010. 5(1): p. 51-64.
161. Zweigerdt, R., et al., Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 2011. 6(5): p. 689-700.
162. Serra, M., et al., Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 2011. 6(8): p. e23212.
163. Steiner, D., et al., Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol, 2010. 28(4): p. 361-4.
164. Amit, M., et al., Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nature protocols, 2011. 6(5): p. 572-9.
165. Larijani, M.R., et al., Long-term maintenance of undifferentiated human embryonic and induced pluripotent stem cells in suspension. Stem cells and development, 2011. 20(11): p. 1911-23.
166. Marinho, P.A.N., et al., Xeno-Free Production of Human Embryonic Stem Cells in Stirred Microcarrier Systems Using a Novel Animal/Human-Component-Free Medium. Tissue Engineering Part C-Methods, 2013. 19(2): p. 146-155.
167. Serra, M., et al., Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. Journal of Biotechnology, 2010. 148(4): p. 208-215.
168. Leung, H.W., et al., Agitation can Induce Differentiation of Human Pluripotent Stem Cells in Microcarrier Cultures. Tissue Engineering Part C-Methods, 2011. 17(2): p. 165-172.
169. Chen, A.K.-L., et al., Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research, 2011. 7(2): p. 97-111.
170. Fernandes, A.M., et al., Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Brazilian Journal of Medical and Biological Research, 2009. 42(6): p. 515-522.
171. Heng, B.C., et al., Translating Human Embryonic Stem Cells from 2-Dimensional to 3-Dimensional Cultures in a Defined Medium on Laminin- and Vitronectin-Coated Surfaces. Stem Cells and Development, 2012. 21(10): p. 1701-1715.
172. Lecina, M., et al., Scalable Platform for Human Embryonic Stem Cell Differentiation to Cardiomyocytes in Suspended Microcarrier Cultures. Tissue Engineering Part C-Methods, 2010. 16(6): p. 1609-1619.
173. Lock, L.T. and E.S. Tzanakakis, Expansion and Differentiation of Human Embryonic Stem Cells to Endoderm Progeny in a Microcarrier Stirred-Suspension Culture. Tissue Engineering Part A, 2009. 15(8): p. 2051-2063.
174. Oh, S.K.W., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Research, 2009. 2(3): p. 219-230.
175. Storm, M.P., et al., Three-Dimensional Culture Systems for the Expansion of Pluripotent Embryonic Stem Cells. Biotechnology and Bioengineering, 2010. 107(4): p. 683-695.
176. Serra, M., et al., Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells. Plos One, 2011. 6(8).
177. Delcroix, G.J.R., et al., Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials, 2010. 31(8): p. 2105-2120.
178. Hernandez, R.M., et al., Microcapsules and microcarriers for in situ cell delivery. Advanced Drug Delivery Reviews, 2010. 62(7-8): p. 711-730.
179. Chayosumrit, M., B. Tuch, and K. Sidhu, Alginate microcapsule for propagation and directed differentiation of hESCs to definitive endoderm. Biomaterials, 2010. 31(3): p. 505-514.
180. Jing, D., A. Parikh, and E.S. Tzanakakis, Cardiac Cell Generation From Encapsulated Embryonic Stem Cells in Static and Scalable Culture Systems. Cell Transplantation, 2010. 19(11): p. 1397-1412.
181. Siti-Ismail, N., et al., The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials, 2008. 29(29): p. 3946-3952.
182. Murua, A., et al., Cell microencapsulation technology: Towards clinical application. Journal of Controlled Release, 2008. 132(2): p. 76-83.
183. Chen, A.K., et al., Expansion of Human Embryonic Stem Cells on Cellulose Microcarriers, in Current Protocols in Stem Cell Biology. 2007, John Wiley & Sons, Inc.
184. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014.
185. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35.
186. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75.
187. O′Connor, M.D., et al., Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 2008. 26(5): p. 1109-16.
188. Kokubu, F., et al., Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J, 1988. 7(11): p. 3413-22.
189. Pera, M.F., B. Reubinoff, and A. Trounson, Human embryonic stem cells. J Cell Sci, 2000. 113 ( Pt 1): p. 5-10.
190. Andrews, P.W., et al., Two monoclonal antibodies recognizing determinants on human embryonal carcinoma cells react specifically with the liver isozyme of human alkaline phosphatase. Hybridoma, 1984. 3(1): p. 33-9.
191. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
192. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. International Journal of Biochemistry & Cell Biology, 2006. 38(7): p. 1063-1075.
193. Brimble, S.N., et al., Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev, 2004. 13(6): p. 585-97.
194. Ma, T., et al., [Basic research on the mechanism of venous reverse flow in reverse-flow island flap]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2005. 19(9): p. 758-61.
195. Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol, 2008. 138(1-2): p. 24-32.
196. Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol, 2008. 133(1): p. 146-53.
197. Baxter, M.A., et al., Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res, 2009. 3(1): p. 28-38.
198. Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 2004. 70(3): p. 837-45.
199. Yamanaka, S., et al., Pluripotency of embryonic stem cells. Cell Tissue Res, 2008. 331(1): p. 5-22.
200. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
201. Harkness, L., et al., Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker. Stem Cell Rev, 2009. 5(4): p. 353-68.
202. Sjogren-Jansson, E., et al., Large-scale propagation of four undifferentiated human embryonic stem cell lines in a feeder-free culture system. Dev Dyn, 2005. 233(4): p. 1304-14.
203. Ameen, C., et al., Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol, 2008. 65(1): p. 54-80.
204. Richards, M., et al., Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol, 2002. 20(9): p. 933-6.
205. Ullmann, U., et al., Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol Hum Reprod, 2007. 13(1): p. 21-32.
206. Peiffer, I., et al., Use of xenofree matrices and molecularly-defined media to control human embryonic stem cell pluripotency: effect of low physiological TGF-beta concentrations. Stem Cells Dev, 2008. 17(3): p. 519-33.
207. Miyazaki, T., et al., Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun, 2008. 375(1): p. 27-32.
208. Zhou, J., et al., mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proc Natl Acad Sci U S A, 2009. 106(19): p. 7840-5.
209. Su, Z., et al., Differentiation of human embryonic stem cells into immunostimulatory dendritic cells under feeder-free culture conditions. Clin Cancer Res, 2008. 14(19): p. 6207-17.
210. Li, Z., et al., Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials, 2010. 31(3): p. 404-12.
211. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells, 2008. 26(9): p. 2257-65.
212. Rosler, E.S., et al., Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn, 2004. 229(2): p. 259-74.
213. Odell, I.D. and D. Cook, Immunofluorescence techniques. J Invest Dermatol, 2013. 133(1): p. e4.
指導教授 樋口亞绀(Akon Higuchi) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明