博碩士論文 102324003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.226.166.214
姓名 林韋承(Wei-cheng Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 小角度與廣角 X-ray 散射分析金屬有機框架材料之孔洞結構
(Pore Structures of Metal-Organic Frameworks by Small-Angle and Wide-Angle X-ray Scattering)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本研究當中,利用小角度與廣角散射技術來分析不同合成路徑的Cu-BTC金屬有機框架材料 (HKUST-1) 中不同尺度的孔洞結構。我們的目標是建立一套快速且低成本的方法,有效的量測出孔洞材料的比表面積,並進一步了解當水氣自HKUST-1孔洞中移除後的結構演變。主要的分析樣品為編號M700及Nano-sized,兩種樣品皆由工研院合作同仁合成提供,並利用已量產的商業化樣品 (編號C300) 作為比較的對象。動態 (in-situ) 的小角度與廣角散射量測資訊顯示出HKUST-1隨著溫度上升,水氣自材料孔洞中移除對其結構與晶相有著明顯的改變,藉由Beaucage模型擬合小角度散射曲線可將孔洞尺寸分佈以及比表面積做完整的定量分析,擬合結果指出不同層級的孔洞結構與比表面積有著一定程度的相依性,此分析技術可以使得我們了解在HKUST-1結構中何種尺度的孔洞是造成二氧化碳吸脫附循環性質好壞的關鍵。另外一方面,在廣角散射圖譜中有局部性的訊號增強,結合小角度散射的分析資訊綜合可知訊號增強是來自於除去HKUST-1孔洞中水氣以及晶粒成長的影響。廣角散射曲線利用GSAS套裝軟體進行結構重組,更可定量的顯現出當除去HKUST-1孔洞中水氣後會使晶格常數以及銅離子之間的間距縮短。
摘要(英) In this investigation, small-angle and wide-angle X-ray scattering (SAXS & WAXS) measurements were utilized to analyze porous structures at different scales for Cu-BTC metal-organic frameworks (HKUST-1) of varied size populations prepared by different synthesis routes. Our objective is to establish a fast and low-cost method for effectively measuring specific surface area of pores, and to understand the change of HKUST-1’s structure after dehydration. Two kinds of HKUST-1, M700 and Nano-size, were provided by ITRI. An in-situ SAXS/WAXS experiment demonstrates the effect of temperature on the concurrent evolutions of pore structure and crystal phase during the removal of water upon heating. The results were also compared to the commercial sample (C300). By simulation modeling of SAXS profiles, the pore size distribution and specific surface area could be quantitatively determined. Quantitative curve analysis of SAXS indicates that the hierarchical pore structures of MOFs have the size-dependent specific surface areas. This gives us more insights in understanding which scale of pore size within MOFs is dominant for controlling the ability of CO2 adsorption. On the other hand, HKUST-1 shows special peak intensity enhancement in WAXS result. Dehydration and grain growth are the two main reasons. GSAS refinement also reveals that the lattice constants and the Cu-Cu distance decreased after dehydration.
關鍵字(中) ★ 小角度
★ 金屬有機框架材料
★ 孔洞
★ 比表面積
關鍵字(英) ★ Small-Angle X-ray Scattering (SAXS)
★ Wide-Angle X-ray Scattering (WAXS)
★ Metal-organic framework (MOF)
★ HKUST-1
★ Pore Structure
論文目次 摘要 .................................................. i
Abstract.............................................. ii
致謝 ................................................ iii目錄 ................................................. iv
圖目錄 .............................................. vii
表目錄 ............................................... xi
第一章 緒論 ........................................... 1
1.1 孔洞材料簡介 ...................................... 1
1.2 金屬有機框架材料之開發與應用 ........................ 3
1.3 結構解析之重要性 ................................... 6
1.4 MOFs 材料穩定性 ................................... 8
1.5 實驗動機 ......................................... 10
第二章 實驗方法 ...................................... 11
2.1 實驗藥品 ......................................... 11
2.2 樣品製備 ......................................... 13
2.2.1 二氧化碳吸脫附循環 .............................. 13
2.2.2 熱處理 ........................................ 14
2.3 使用儀器.......................................... 14
2.3.1 小角度 X 光散射 (SAXS) ......................... 15
2.3.2 比表面計算 ..................................... 19
2.3.3 Rietveld 結構精算法 ............................ 20
2.3.4 場發射掃描式電子顯微鏡 (FE-SEM) ................. 22
2.3.5 熱分析 (TGA & DSC) ............................ 24
2.3.6 傅立葉轉換紅外線光譜儀 (FT-IR) .................. 25
第三章 結果與討論 ..................................... 26
3.1 HKUST-1 基本性質 ................................. 26
3.1.1 比表面積量測資訊 ................................ 26
3.1.2 二氧化碳吸脫附循環量測資訊 ....................... 26
3.2 SAXS 變溫臨場量測 - 中孔洞結構解析與比表面積計算 .... 27
3.2.1 HKUST-1 中孔洞結構解析技術建立 .................. 27
3.2.2 SAXS 臨場觀察中孔洞結構變化 ..................... 29
3.2.3 比表面積理論計算及分佈之探討 ..................... 32
3.3 WAXS 變溫臨場量測 - 溫度對 HKUST-1 結構之影響及GSAS 結構精算分析 .............................................. 34
3.3.1 CO 2 吸脫附循環及溫度對 HKUST-1 繞射訊號之影響 ... 34
3.3.2 GSAS 結構精算分析 .............................. 40
第四章 結論 .......................................... 43
Future Work .......................................... 45
參考資料 .............................................. 46
附錄 ................................................. 53
附錄 1 – SAXS 圖譜 1D 擬合結果 (Beaucage model) ........ 53
附錄 2 – SAXS 理論計算比表面積分析之斜率擬合結果 ......... 55
附錄 3 – 口試投影片 ................................... 57
參考文獻 [1] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, "REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity", Pure and Applied Chemistry, 57, p. 603-619, 1984.
[2] P. Behrens, "Mesoporous inorganic solids", Advanced Materials, 5, p. 127-132, 1993.
[3] J. Y. Ying, C. P. Mehnert, and M. S. Wong, "Synthesis and Applications of Supramolecular-Templated Mesoporous Materials", Angewandte Chemie International Edition, 38, p. 56-77, 1999.
[4] G. M. Haggerty and R. S. Bowman, "Sorption of chromate and other inorganic anions by organo-zeolite", Environmental Science & Technology, 28, p. 452-458, 1994.
[5] L. J. P. van den Broeke, W. J. W. Bakker, F. Kapteijn, and J. A. Moulijn, "Transport and separation properties of a silicalite-1 membrane—I. Operating conditions", Chemical Engineering Science, 54, p. 245-258, 1999.
[6] T. Q. Gardner, J. L. Falconer, and R. D. Noble, "Adsorption and diffusion properties of zeolite membranes by transient permeation", Desalination, 149, p. 435-440, 2002.
[7] J. Szanyi, J. Hun Kwak, R. A. Moline, and C. H. F. Peden, "The adsorption of NO2 and the NO + O2 reaction on Na-Y,FAU: an in situ FTIR investigation", Physical Chemistry Chemical Physics, 5, p. 4045-4051, 2003.
[8] M. P. Bernal, J. Coronas, M. Menéndez, and J. Santamaría, "Separation of CO2/N2 mixtures using MFI-type zeolite membranes", AIChE Journal, 50, p. 127-135, 2004.
[9] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, et al., "A new family of mesoporous molecular sieves prepared with liquid crystal templates", Journal of the American Chemical Society, 114, p. 10834-10843, 1992.
[10] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism", nature, 359, p. 710-712, 1992.
[11] Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, "Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays", Chemistry of Materials, 6, p. 1176-1191, 1994.
[12] X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu, and K. M. Kemner, "Functionalized Monolayers on Ordered Mesoporous Supports", Science, 276, p. 923-926, 1997.
[13] C. Biondi, M. Bonamico, L. Torelli, and A. Vaciago, "On the structure and water content of copper(II) tricyanomethanide", Chemical Communications (London), p. 191-192, 1965.
[14] J. Della Rocca and W. Lin, "Nanoscale Metal–Organic Frameworks: Magnetic Resonance Imaging Contrast Agents and Beyond", European Journal of Inorganic Chemistry, 2010, p. 3725-3734, 2010.
[15] B. F. Hoskins and R. Robson, "Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2," Journal of the American Chemical Society, 112, p. 1546-1554, 1990.
[16] H. J. Choi and M. P. Suh, "Self-Assembly of Molecular Brick Wall and Molecular Honeycomb from Nickel(II) Macrocycle and 1,3,5-Benzenetricarboxylate:  Guest-Dependent Host Structures", Journal of the American Chemical Society, 120, p. 10622-10628, 1998.
[17] S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, "A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n", Science, 283, p. 1148-1150, 1999.
[18] J. Kim, B. Chen, T. M. Reineke, H. Li, M. Eddaoudi, D. B. Moler., "Assembly of Metal−Organic Frameworks from Large Organic and Inorganic Secondary Building Units:  New Examples and Simplifying Principles for Complex Structures▵", Journal of the American Chemical Society, 123, p. 8239-8247, 2001.
[19] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, et al., "Highly controlled acetylene accommodation in a metal-organic microporous material", Nature, 436, p. 238-241, 2005.
[20] U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastre, "Metal-organic frameworks-prospective industrial applications", Journal of Materials Chemistry, 16, p. 626-636, 2006.
[21] U. D. Müller, M. D. Hesse, H. D. Pütter, M. D. Schubert, and D. D. Mirsch, "Concentration of methane in methane containing gas mixtures by adsorption", ed: Google Patents, 2006.
[22] M. Eddaoudi, M. Hesse, L. Lobree, U. Mueller, and O. M. Yaghi, "Epoxidation process using catalysts containing metal organic framework", ed: Google Patents, 2003.
[23] U. Muller, O. Metelkina, H. Junicke, T. Butz, and O. Yaghi, "Process for preparing hydrogen peroxide from the elements", ed: Google Patents, 2004.
[24] S. Hermes, M.-K. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, "Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition", Angewandte Chemie International Edition, 44, p. 6237-6241, 2005.
[25] S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp, and T. E. Albrecht-Schmitt, "A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation", Chemical Communications, p. 2563-2565, 2006.
[26] M. J. Ingleson, J. P. Barrio, J. Bacsa, C. Dickinson, H. Park, and M. J. Rosseinsky, "Generation of a solid Bronsted acid site in a chiral framework", Chemical Communications, p. 1287-1289, 2008.
[27] E. Y. Lee, S. Y. Jang, and M. P. Suh, "Multifunctionality and Crystal Dynamics of a Highly Stable, Porous Metal−Organic Framework [Zn4O(NTB)2] ", Journal of the American Chemical Society, 127, p. 6374-6381, 2005.
[28] S.-H. Lo, C.-H. Chien, Y.-L. Lai, C.-C. Yang, J. J. Lee, D. S. Raja, "A mesoporous aluminium metal-organic framework with 3 nm open pores", Journal of Materials Chemistry A, 1, p. 324-329, 2013.
[29] C.-S. Tsao, M.-S. Yu, T.-Y. Chung, H.-C. Wu, C.-Y. Wang, K.-S. Chang, "Characterization of Pore Structure in Metal−Organic Framework by Small-Angle X-ray Scattering", Journal of the American Chemical Society, 129, p. 15997-16004, 2007.
[30] J. Hafizovic, M. Bjørgen, U. Olsbye, P. D. C. Dietzel, S. Bordiga, C. Prestipino, et al., "The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities", Journal of the American Chemical Society, 129, p. 3612-3620, 2007.
[31] X. Song, Y. Zou, X. Liu, M. Oh, and M. S. Lah, "A two-fold interpenetrated (3,6)-connected metal-organic framework with rutile topology showing a large solvent cavity", New Journal of Chemistry, 34, p. 2396-2399, 2010.
[32] K. Schlichte, T. Kratzke, and S. Kaskel, "Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2", Microporous and Mesoporous Materials, 73, p. 81-88, 2004.
[33] J. J. Low, A. I. Benin, P. Jakubczak, J. F. Abrahamian, S. A. Faheem, and R. R. Willis, "Virtual High Throughput Screening Confirmed Experimentally: Porous Coordination Polymer Hydration", Journal of the American Chemical Society, 131, p. 15834-15842, 2009.
[34] A. Vishnyakov, P. I. Ravikovitch, A. V. Neimark, M. Bülow, and Q. M. Wang, "Nanopore Structure and Sorption Properties of Cu−BTC Metal−Organic Framework", Nano Letters, 3, p. 713-718, 2003.
[35] R. Senthil Kumar, S. Senthil Kumar, and M. Anbu Kulandainathan, "Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction", Microporous and Mesoporous Materials, 168, p. 57-64, 2013.
[36] L. H. Wee, M. R. Lohe, N. Janssens, S. Kaskel, and J. A. Martens, "Fine tuning of the metal-organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range", Journal of Materials Chemistry, 22, p. 13742-13746, 2012.
[37] A. R. Abbasi, K. Akhbari, and A. Morsali, "Dense coating of surface mounted CuBTC Metal–Organic Framework nanostructures on silk fibers, prepared by layer-by-layer method under ultrasound irradiation with antibacterial activity", Ultrasonics Sonochemistry, 19, p. 846-852, 2012.
[38] 鄭有舜, 物理雙月刊, 廿六卷二期, p. 414-424, 2004.
[39] 陳信龍, 鄭有舜, 科儀新知, 第二十九卷第二期, p. 7-17, 2007.
[40] R. J. Roe, "Methods of X-ray and neutron scattering in polymer science", Oxford University Press: New York, p. 155, 2000.
[41] O. Glatter and O. Kratky, "Small Angle X-ray Scattering", Academic Press, 1982.
[42] G. Beaucage, "Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering", Journal of Applied Crystallography, 28, p. 717-728, 1995.
[43] G. Beaucage, "Small-Angle Scattering from Polymeric Mass Fractals of Arbitrary Mass-Fractal Dimension", Journal of Applied Crystallography, 29, p. 134-146, 1996.
[44] J.-Y. Liou and Y.-S. Sun, TWNSS Newsletters, 第2卷第1期, p. 7, 2014.
[45] M. Zhong, E. K. Kim, J. P. McGann, S.-E. Chun, J. F. Whitacre, M. Jaroniec, "Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer", Journal of the American Chemical Society, 134, p. 14846-14857, 2012.
[46] R. A. Young, "The Rietveld Method", Oxford University Press, Oxford, UK, 1993.
[47] R. J. Hill and C. J. Howard, "Peak shape variation in fixed-wavelength neutron powder diffraction and its effect on structural parameters obtained by Rietveld analysis", Journal of Applied Crystallography, 18, p. 173-180, 1985.
[48] R. J. Hill and I. C. Madsen, "Data Collection Strategies for Constant Wavelength Rietveld Analysis", Powder Diffraction, 2, p. 146-162, 1987.
[49] L. TechMax Technical Co., Nov. 2003.
[50] Z. Liang, M. Marshall, and A. L. Chaffee, "CO2 Adsorption-Based Separation by Metal Organic Framework (Cu-BTC) versus Zeolite (13X)", Energy & Fuels, 23, p. 2785-2789, 2009.
[51] Y.-K. Seo, G. Hundal, I. T. Jang, Y. K. Hwang, C.-H. Jun, and J.-S. Chang, "Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture", Microporous and Mesoporous Materials, 119, p. 331-337, 2009.
[52] Y. Liu, C. M. Brown, D. A. Neumann, V. K. Peterson, and C. J. Kepert, "Inelastic neutron scattering of H2 adsorbed in HKUST-1", Journal of Alloys and Compounds, 446–447, p. 385-388, 2007.
[53] M. K. Bhunia, J. T. Hughes, J. C. Fettinger, and A. Navrotsky, "Thermochemistry of Paddle Wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1", Langmuir, 29, p. 8140-8145, 2013.
指導教授 孫亞賢(Ya-sen Sun) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明