博碩士論文 102223020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:18.119.129.77
姓名 周玠儒(Chieh-ju Chou)  查詢紙本館藏   畢業系所 化學學系
論文名稱 中孔洞碳材於高效能鋰離子電池之應用
(Electrochemical Performance of Lithium Ion Batteries Based on Ordered Mesoporous Carbons)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用
★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要探討規則中孔洞碳材CMK-8應用在鋰離子電極複合材料的相關研究,首先利用三嵌段共聚高分子型界面活性劑P123與矽源TEOS (Tetraethyl orthosilicate) 合成出Ia3 ̅d對稱性的Cubic KIT-6矽材,接著利用奈米膜鑄法合成出相同對稱性的CMK-8碳材,經過XRD、BET及TEM等鑑定後確認是高表面積且結構規則的中孔洞碳材。
本論文第一部份將磷酸鋰鐵 (LiFePO4) 前驅物:醋酸鋰、硝酸鐵、85 %磷酸,用含浸水熱法含浸至規則中孔洞CMK-8碳材內 (分別使用了水和乙醇兩種溶劑),不但抑制了LiFePO4晶體大小和雜相的生成,奈米尺寸晶體縮短了離子跟電子傳導路徑、CMK-8提供規則3維孔道,增加了擴散速率及整體材料在大電流充放電的結構穩定性,透過檸檬酸的添加,在0.05C充放速率下保有近100 %的效率及提升至166 mAh/g 高電容量,更能承受10C甚至更大電流的挑戰,此奈米複合材料極具應用的潛力!
第二部份將SnO2前驅物含浸至高規則CMK-8碳材孔洞中做負極應用,此複合材料有近40 %的高含浸量,電性結果顯示電容量比原來CMK-8高出許多,在0.05C第一圈放電有超過5000 mAh/g的電容量,之後的可逆電容量依舊非常高,庫倫效率幾乎維持在100%,循環次數多且耐大電流,非常適合用在大電容量產品上!!
摘要(英) Rechargeable lithium-ion battery (LIB) is one of the most promising batteries, which is currently used in many portable electronic devices and electric vehicles. In recent years, there are some applications of mesoporous carbon materials as cathode for LIB. Olivine-structured LiFePO4 (LFP) has been the focus of research in developing low cost, high performance, environmental friendliness and high thermal stability. However, LFP is insulating in nature with a low electric conductivity of around 10−11 Scm−1 (compared with 10−3 Scm–1 for LiCoO2 and 10−5 Scm−1 for LiMn2O4), inducing low rate capacity. Therefore many efforts have been made to improve the electrochemical performance.
In this work, ordered mesoporous CMK-8 was introduced into the electrode active materials to achieve high electrochemical performance. The first part, different solvent and different ratio impregnation strategies are used to prepare high rate LFP with ordered mesoporous to contact the embedded LFP nanocrystal. CMK-8 ordered mesoporous carbon material (OMCs) is assembly of cubic ordered 3D structure, which has high surface area and suitable for facile impregnation. Mesopore is good for Li+ intercalation and deintercalation due to the short Li+ diffusion distance and a high lithium-ion flux across the electrolyte/solid interface. Base on half-cell testing, mesoporous nanocomposite LFP/C-CMK8-EtOH-05 achieved a high capacity of 166 mAh/g at 0.05C rate, and 121 mAh/g at 5C rate with good cycle life.
The second part, a hybrid material consisting of SnO2 nanoparticles (NPs) was embedded in the hard template CMK-8 as high capacity anode materials. It is observed that near 40 wt% of SnO2 particles with size between 3-5 nm are highly dispersed and homogeneously incorporated in the mesoporous channels and no bulky aggregates were found. The nanocomposite exhibits improved kinetics of lithiation–delithiation and high reversible capacity, and excellent cyclic stability without capacity loss over 200 cycles at 1C rate (780 mA/g) with a coulombic efficiency close to 100% after the initial cycle. This can be ascribed to the 3D-connected porosity and the confinement effect of the OMCs on the volume change of SnO2 NPs.
These results provide appropriate insight for improving the lithium storage performance of CMK-8 by accelerating the reaction kinetics and indicate that these composites have great potential to be applied in high-capacity and durable lithium ion batteries.
關鍵字(中) ★ 中孔洞碳材
★ 磷酸鋰鐵
★ 二氧化錫
★ 鋰離子電池
關鍵字(英) ★ mesoporous carbon materials
★ lithuum iron phosphate
★ tin oxide
★ Lithium ion batteries
論文目次 中文摘要 i
Abstract ii
謝誌 iv
目錄 v
圖目錄 x
表目錄 xv
第一章 緒論 - 1 -
1-1前言 - 1 -
1-2研究目的及架構 - 6 -
第二章 文獻回顧 - 8 -
2-1中孔洞碳材 (Mesoporous carbon materials) - 8 -
2-1-1奈米模鑄法 (Nanocasting) - 11 -
2-1-2以奈米模鑄法合成規則有序之中孔洞碳材 - 17 -
2-1-3以界面活性劑模造法 (Surfactant templating) 合成規則有序之中孔洞碳材 - 28 -
2-2陰極材料 - 33 -
2-2-1 LiCoO2陰極材料 - 33 -
2-2-2 LiNiO2陰極材料 - 34 -
2-2-3 LiMn2O4陰極材料 - 35 -
2-2-4 LiNi1-x-yCoxMnyO2陰極材料 - 36 -
2-2-5 LiFePO4陰極材料 - 37 -
2-2-6 LiFePO4陰極藉由中孔洞材料改質方法 - 39 -
2-3陽極材料 - 53 -
2-3-1碳材 - 53 -
2-3-2非碳材 - 56 -
2-3-2-1含錫氧化物 - 56 -
2-3-2-2 鋰合金 - 57 -
2-3-3 SnO2陽極藉由中孔洞材料改質方法 - 58 -
第三章 實驗方法 - 70 -
3-1藥品 - 70 -
3-2奈米模鑄法合成三維孔道結構 (Ia3d) 中孔洞碳材 - 72 -
3-2-1三維立方體Ia3d中孔洞矽材模板KIT-6合成 - 72 -
3-2-2三維立方體 Ia3d 中孔洞碳材 CMK-8合成 - 73 -
3-3水熱法合成LFP/CMK8陰極複合材料 - 74 -
3-3-1 LiFePO4前驅物合成 - 74 -
3-3-2初濕含浸法 + 低溫水熱法 - 74 -
3-3-3燒結條件 - 74 -
3-3-4包覆導電碳 - 75 -
3-4含浸法合成SnO2@CMK8陽極複合物 - 75 -
3-5材料電化學性能測試 - 76 -
3-5-1陰極極片製作 - 76 -
3-5-2陽極極片製作 - 76 -
3-5-3硬幣型電池組裝 - 77 -
3-5-4電池性能測試方法 - 78 -
3-5-4-1定(變)電流充放電循環測試 - 78 -
3-5-4-2電化學阻抗分析 (EIS) - 78 -
3-5-4-3循環伏安法 (CV) - 78 -
3-6實驗鑑定儀器 - 79 -
3-7鑑定儀器之原理 - 80 -
3-7-1同步輻射光束線 - 80 -
3-7-2 X射線粉末繞射 (Powder X-Ray Diffractometer, XRD) - 83 -
3-7-3氮氣等溫吸脫附曲線、表面積與孔洞特性鑑定 - 84 -
3-7-3熱種分析儀 (Thermogravimetric Analyzer, TGA)83 - 88 -
3-7-4穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)85 - 89-
3-7-5掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)86 - 91 -
第四章 結果與討論 - 92 -
4-1奈米模鑄法合成Ia3d 規則中孔洞碳材及LFP/CMK8 陰極奈米複合物 - 92 -
4-1-1低角度XRD結果分析 - 92 -
4-1-2高角度XRD 結果分析 - 96 -
4-1-3氮氣等溫吸附/脫附結果分析 - 99 -
4-1-4熱重分析 - 104 -
4-1-5 TEM結果分析 - 106 -
4-1-6 SEM結果分析 - 108 -
4-1-7導電碳包覆前之電性表現 - 110 -
4-1-8導電碳包覆後之電性表現 - 114 -
4-1-9循環伏安法分析 - 121 -
4-1-10交流阻抗分析 - 123 -
4-1-11感應耦合電漿/原子放射光譜分析 - 125 -
4-2含浸法合成SnO2@CMK8陽極奈米複合物 - 126 -
4-2-1 XRD 結果分析 - 126 -
4-2-2氮氣等溫吸附/脫附結果分析 - 128 -
4-2-3熱重分析 - 130 -
4-2-4 TEM結果分析 - 131 -
4-2-5電性表現 - 133 -
4-2-6循環伏安法分析 - 137 -
4-2-7交流阻抗分析 - 139 -
4-2-8充放電前後SEM結果分析 - 140 -
第五章 結論 - 142 -
參考文獻 - 144 -
參考文獻 1. 李日琪, 鋰離子電池陽極碳材料開發, 碩士論文, 國立中央大學, 中華民國台灣 (2000).
2. 張忠勝, 鋰離子電池LiNi1/3Co1/3Mn1/3O2陰極材料之製程開發與改質研究, 碩士論文, 國立中央大學, 中華民國台灣 (2007).
3. J. Thomas, “Lithium batteries: A spectacularly reactive cathode”, Nature Mater., 2003, 2, 705-706.
4. T. G. Lamond, H. Marsh, “The surface properties of carbon—III the process of activation of carbons”, Carbon, 1964, 1, 293-302.
5. Z. H. Hu, M. P. Srinivasan, Y. M. Ni, ”Preparation of mesoporous high-surface-area activated carbon”, Adv. Mater., 2000, 12, 62-65.
6. H. Marsh, B. Rand, “The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities”, Carbon, 1971, 9, 63-72 .
7. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, “Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules”, Chem. Mater., 1996, 8, 454-462.
8. A. Oya, S. Yoshida, J. Alcanizmonge, A. Linaressolano, “Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt”, Carbon, 1995, 33, 1085-1090.
9. J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya, S. Yoshida, T. Iizuka, “Novel preparation method for the production of mesoporous carbon fiber from a polymer blend”, Carbon, 1997, 35, 1031-1033.
10. H. Tamon, H. Ishuzada, T. Yamamoto, T. Suzuki, “Preparation of mesoporous carbon by freeze drying”, Carbon, 1999, 37, 2049-2055.
11. R. W. Pekala, “Organic aerogels from the polycondensation of resorcinol with formaldehyde”, J. Mater. Sci., 1989, 24, 3221-3227.
12. J. H. Knox, B. Kaur, G. R. Millward, “Structure and performance of porous graphitic carbon in liquid chromatography”, J. Chromatogr., 1986, 352, 3-25.
13. J. H. Knox, K. K. Unger, H. Mueller, “Prospects for carbon as packing material in high-performance liquid chromatography”, J. Liq. Chromatogr., 1983, 6, 1-36.
14. W. Guo, F. Su, X. S. Zhao, “Ordered mesostructured carbon templated by SBA-16 silica”, Carbon, 2005, 43, 2423-2426.
15. C. D. Liang, K. L. Hong, G. A. Guiochon, J. W. Mays, S. Dai, “Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers”, Angew. Chem. Int. Ed., 2004, 43, 5785-5789.
16. C. D. Liang, S. Dai, “Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction”, J. Am. Chem. Soc., 2006, 128, 5316-5317.
17. S. Tatanka, N. Nishiyama, Y. Egashira, K. Ueyama, ”Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite”, Chem. Commun., 2005, 16, 2125-2127.
18. C. G. Goltner, M. C. Weienberger, “Mesoporous organic polymers obtained by two-step nanocasting”, Acta Polymer, 1998, 49, 704-709.
19. T. Kyotani, ”Control of pore structure in carbon”, Carbon, 2000, 38, 269-286.
20. K. Sonnenburg, P. Adelhelm, M. Antonietti, B. Smarsly, R. Noske, P. Strauch, “Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques”, Phys. Chem. Chem. Phys., 2006, 8, 3561-3566.
21. J. H. Smått, N. Schüwer, M. Järn, W. Lindner, M. Lindén, “Synthesis of micrometer sized mesoporous metal oxide spheres by nanocasting”, Micropor. Mesopor. Mater., 2008, 112, 308-318.
22. R. Ryoo, S. H. Joo, S. Jun, “Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation”, J. Phys. Chem. B, 1999, 103, 7743–7746.
23. L. A. Solovyov, V. I. Zaikovskii, A. N. Shmakov, O. V. Belousov, R. Ryoo, ”Framework characterization of mesostructured carbon CMK-1 by X-ray powder diffraction and electron microscopy”, J. Phys. Chem. B, 2002, 106, 12198-12202.
24. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, ”Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure”, J. Am. Chem. Soc., 2000, 122, 10712-10713.
25. R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, “Ordered mesoporous carbons”, Adv. Mater., 2001, 13, 677-681.
26. F. Kleitz, S. H. Choi, R. Ryoo, “Cubic Ia3d large mesoporous silica: synthesis and replication to platinumnanowires, carbon nanorods and carbon nanotubes”, Chem. Commun., 2003, 17, 2136-2137.
27. R. Ryoo, S. H. Joo, S. Jun, T. Tsubakiyama, O. Terasaki, “Ordered mesoporous carbon molecular sieves by templated synthesis: the structural varieties”, Stud. Surf. Sci. Catal., 2001, 135, 150.
28. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, “correction: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles”, Nature, 2001, 414, 470-470.
29. J. S. Lee, S. H. Joo, R. Ryoo, “Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters”, J. Am. Chem. Soc., 2002, 124, 1156-1157.
30. T. W. Kim, L. A. Solovyov, “Synthesis and characterization of large-pore ordered mesoporous carbons using gyroidal silica template”, J. Mater. Chem., 2006, 16, 1445-1455.
31. T. W. Kim, I. S. Park; R. Ryoo, “A synthetic route to ordered mesoporous carbon materials with graphitic pore walls”, Angew. Chemie., 2003, 115, 4511-4515.
32. C. H. Kim; D. K. Lee,T. J. Pinnavaia, ”Graphitic mesostructured carbon prepared from aromatic precursors”, Langmuir, 2004, 20, 5157-5159.
33. A. B. Fuertes, S. Alvarez, ”Graphitic mesoporous carbons synthesised through mesostructured silica templates”, Carbon, 2004, 42, 3049-3055.
34. A. H. Lu, F. Schüth, “Nanocasting: A versatile strategy for creating nanostructured porous materials”, Adv. Mater., 2006, 18, 1793-1805.
35. F. Q. Zhang, Y. Meng, D. Gu, Y. Yan, Z. X. Chen, B. Tu, D. Y. Zhao , “An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology”, Chem. Mater., 2006, 18, 5279-5288.
36. B. Pietro, M. Patriarca, B. Serosati, “On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries”, J. Power Sources, 1982, 8, 289-299.
37. B. Pietro, M. Patriarea, B. Scrosati, “Electrochemical investigation of the lithium-niobium disulphide organic electrolyte rechargeable cell”, Synth.Metal, 1982, 5, 1-9.
38. M. Lazzari, B. Scrosati, “A cyclable lithium organic electrolyte cell based on two intercalation electrodes”, J. Electrochem. Soc., 1980, 127, 773-774.
39. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, ”LixCoO2 (0 < x < 1): A new cathode material for batteries of high energy density”, Mater. Res. Bull., 1980, 15, 783-789 .
40. Y. S. Horn, L. Croguennec, C. Delmas, E. C. Nelson, M. A. OKeefe, “Atomic resolution of lithium ions in LiCoO2”, Nature Mater., 2003, 2, 464-467.
41. S. Levasseur, M. Menetrier, E. Suard, C. Delmas, ”Evidence for structural defects in non-stoichiometric HT-LiCoO2: electrochemical, electronic properties and 7Li NMR studies”, Solid State Ionics, 2000, 128, 11-24.
42. M. Holzapfel, C. Haak, and A. Ott, “Lithium-ion conductors of the system LiCo1−xFexO2, preparation and structural investigation”, J. Solid State Chem., 2001, 156, 470-479 .
43. T. Fang, J. G. Duh and S. R. Sheen, ”LiCoO2 cathode material coated with nano-crystallized ZnO for Li-ion batteries”, Thin Solid Films, 2004, 469-470, 361-365.
44. H. Liu, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu , “Cathode materials for lithium ion batteries prepared by sol-gel methods” J. Solid State Eletrochem., 2004, 8, 450-466.
45. C. J. Hana, W. S. Eoma, S. M. Lee, W. Il Cho, H. Jang, “Formation mechanism of alkyl dicarbonates in Li-ion cells” J. Power Sources, 2005, 144, 208-215 .
46. http://homepage3.nifty.com/mnakayama/research/research-e.htm
47. H. Berg, H. K. Rundlo, J. O. Thomas, “The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction”, Solid State Ionics, 2001, 144, 65-69 .
48. L. S. Cahill, S. C. Yin, A. Samoson, I. Heinmaa, L. F. Nazar and G. R. Goward, ”6Li NMR Studies of cation disorder and transition metal ordering in Li[Ni1/3Mn1/3Co1/3]O2 using ultrafast magic angle spinning”, Chem. Mater,. 2005, 17, 6560-6566 .
49. T. Ohzuku and Y. Makimura, “Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries”, Chem. Lett., 2001, 30, 642-643 .
50. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, ”Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries”, J. Electrochem. Soc., 1997, 144, 1188-1194.
51. http://www.powermagazine.cn/HTML/13992_1.html
52. 費定國, “鋰離子電池在電動車市場之展望”, 工業材料雜誌, 2005, 229, 141.
53. S. Lim, C. S. Yoon, J. Cho, “Synthesis of nanowire and hollow cathodes for high-performance lithium batteries”, Chem. Mater., 2008, 20, 4560-4564.
54. F. Liang, Y. Yao, Y. Dai, B. Yang, W. Ma, T. Watanabe, “Preparation of porous structure LiFePO4/C composite by template methode for lithium ion batteries”, Solid State Ionics, 2012, 214, 31-36.
55. Y. Ren, P. G. Bruce, “Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries”, Electrochem. Commun., 2012, 17, 60-62.
56. F. Cheng, D. Li, A. Liu, W. Li, “Controllable synthesis of high loading LiFePO4/C nanocomposites using bimodal mesoporous carbon as support for high power Li-ion battery cathodes”, J. Energy Chem., 2013, 22, 907-913.
57. M. Y. Cho, H. Kim, H. Kim, Y. S. Lim, “Size-selective synthesis of mesoporous LiFePO4/C microspheres based on nucleation and growth rate control of primary particles”, J. Mater. Chem. A, 2014, 2, 5922-5927
58. Jiajun. W, Xueliang. S, “Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries”, Energy Environ. Sci., 2012, 5, 5163-5185.
59. H. Shi, J. Barker, M. Y. Saidi, R. Koksbang, “Structure and lithium intercalation properties of synthetic and Natural graphite”, J. Electrochem. Soc, 1996, 143, 3466-3472.
60. 姚慶意、陳金銘, “鋰離子二次電池負極材料介紹”, 工業材料, 1996, 110, 57.
61. 陳金銘, “高容量碳粉材料”, 工業材料, 1997, 133, 85.
62. 楊模樺, “鋰離子二次電池負極新材料介紹-含錫氧化物”, 工業材料, 1997, 133, 81,.
63. H. Qiao, J. Li, J. Fu, D. Kumar, Q. Wei, Y. Cai, F. Huang, ”Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage properties”, ACS Appl. Mater. Interfaces, 2011, 3, 3704–3708.
64. R. Z. Zhang, H. X. Dai, Y. C. Du, L. Zhang, J. G. Deng, Y. S. Xia, Z. X. Zhao, X. Meng, Y. X. Liu,”P123-PMMA dual-templating generation and unique physicochemical properties of three-dimensionally ordered macroporous iron oxides with nanovoid in the crystalline walls”, Inorg. Chem., 2011, 50, 2534–2544.
65. Z. A. Hu, Y. L. Xie, Y. X. Wang, L. P. Mo, Y. Y. Yang, Z. Y. Zhang, “Polyaniline/SnO2 nanocomposite for supercapacitor application” , Mater. Chem. Phys., 2009, 114, 990–995.
66. S. Bhattacharyya, A. Gabashvili, N. Perkas, A. Gedanken, “Sonochemical insertion of silver nanoparticals into two-dimensional mesoporous alumina”, J. Phys. Chem. C, 2007, 111, 11161–11167.
67. A. M. Seayad, D. M. Antonelli,”Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials”, Adv. Mater., 2004, 16, 765-777.
68. X. Wang, Z. Li, L.Yin, “Nanocomposites of SnO2@ordered mesoporous carbon (OMC) as anode materials for lithium-ion batteries with improved electrochemical performance”, CrystEngComm, 2013, 15, 7589–7597.
69. G. Zhou, D. W. Wang, L. Li, N. Li, F. Li, H. M. Cheng, “Nanosize SnO2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage”, Nanoscale, 2013, 5, 1576–1582.
70. G. Zhou, D. W. Wang, X. Shan, N. Li, F. Li, H. M. Chenga,” Hollow carbon cage with nanocapsules of graphitic shell/nickel core as an anode material for high rate lithium ion batteries”, J. Mater. Chem, 2012, 22, 11252–11256.
71. N. R. Srinivasan, S. Mitra and R. Bandyopadhyaya, ”Improved electrochemical performance of SnO2-mesoporous carbon hybrid as negative electrode for lithium ion battery applications”, Phys. Chem. Chem. Phys., 2014, 16, 6630-6640.
72. D. Zhou, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Strucky, “Triblock copolymer syntheses of mesopouous silica with periodic 50 to 300 angstrom pores”, Science, 1998, 279, 548–552.
73. J. A. Botas, D. P. Serrano, R. Guil-López, P. Pizarro, G. Gómez, ” Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production”, Int. J. Hydrogen Energy, 2010, 35, 9788–9794.
74. M. Kruk, M. Jaroniec, T. W. Kim, R. Ryoo, “Synthesis and characterization of hesagonally ordered carbon nanpipes”, Chem. Mater., 2003, 15, 2815-2823.
75. Jie Wang, Huolin L. Xin and Deli Wang, “Recent progress on mesoporous carbon materials for advanced energy conversion and storage”, Part. Part. Syst. Charact., 2014, 31, 515–539.
76. https://www.nsrrc.org.tw/
77. K. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R.-A. Pierotti, J. Rouquerol and T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure & Appl. Chem., 1986, 57, 603-619.
78. S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, “On a theory of the van der waals adsorption of gases”, J. Am. Chem. Soc., 1940, 62, 1723-1732.
79. 王奕凱, 邱宗明, 李秉傑合譯, 非均勻系催化原理及應用, 國立編譯館, 渤海堂文化公司, 台北, (1993).
80. E. P. Barrett, L. S. Joyner, P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms”, J. Am. Chem. Soc., 1951, 73, 373-380.
81. S. J.Gregg; K. S. W. Sing, “Adsorption, Surface Area and Porosity”, 2nd Ed. Academic press, New York, NY, 1982.
82. G. Ertl; H. KnÖzinger; J. Weitkamp, “Handbook of Heterogeneous Catalysis”, vol 3, VCH D-69451 Weinheim, 1997, 1058.
83. http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter7_report.pdf https://goo.gl/HSyFKn.
84. 羅聖全; 電子顯微鏡介紹穿透式電子顯微鏡, 清華大學。
85. 羅聖全; 電子顯微鏡介紹掃描式電子顯微鏡, 清華大學。
86. T. W. Kim, F. Kleitz, B. Paul, R. Ryoo, “MCM-48-like large mesoporous silicas with tailored pore structure:  facile synthesis domain in a ternary triblock Copolymer−Butanol−Water System”, J. Am. Chem. Soc., 2005, 127, 7601-7610.
87. Y. Sakamoto, T. W. Kim, R. Ryoo, O. Terasaki,“Three-dimensional structure of large-pore mesoporous cubic Ia d silica with complementary pores and its carbon replica by electron crystallography”, Angew. Chem. Int. Ed., 2004, 43, 5231-5234.
88. Z. X. Liu, J. L. Li, L. Wang, “LiFePO4/C composites derived from precipitated FePO4 precursor: effects of mixing processes”, Ionics, 2014, 20, 1511-1516.
89. X. Yang, Y. L. Xu, H. Zhang, “Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material, ” Electrochimica Acta, 2013, 114, 259-264.
90. X. W. Lou, J. S. Chen, P. Chen,”One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible llithium storage properties”, Chem. Mater., 2009, 21, 2868-2874.
91. http://en.wikipedia.org/wiki/Scherrer_equation
92. D. Saikia, T. H. Wang, C. J. Chou, J. Fang, L. D. Tsai, H. M. Kao, ”A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries”, RSC Adv., 2015, 5, 42922-42930.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明