參考文獻 |
1. 李日琪, 鋰離子電池陽極碳材料開發, 碩士論文, 國立中央大學, 中華民國台灣 (2000).
2. 張忠勝, 鋰離子電池LiNi1/3Co1/3Mn1/3O2陰極材料之製程開發與改質研究, 碩士論文, 國立中央大學, 中華民國台灣 (2007).
3. J. Thomas, “Lithium batteries: A spectacularly reactive cathode”, Nature Mater., 2003, 2, 705-706.
4. T. G. Lamond, H. Marsh, “The surface properties of carbon—III the process of activation of carbons”, Carbon, 1964, 1, 293-302.
5. Z. H. Hu, M. P. Srinivasan, Y. M. Ni, ”Preparation of mesoporous high-surface-area activated carbon”, Adv. Mater., 2000, 12, 62-65.
6. H. Marsh, B. Rand, “The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities”, Carbon, 1971, 9, 63-72 .
7. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, “Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules”, Chem. Mater., 1996, 8, 454-462.
8. A. Oya, S. Yoshida, J. Alcanizmonge, A. Linaressolano, “Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt”, Carbon, 1995, 33, 1085-1090.
9. J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya, S. Yoshida, T. Iizuka, “Novel preparation method for the production of mesoporous carbon fiber from a polymer blend”, Carbon, 1997, 35, 1031-1033.
10. H. Tamon, H. Ishuzada, T. Yamamoto, T. Suzuki, “Preparation of mesoporous carbon by freeze drying”, Carbon, 1999, 37, 2049-2055.
11. R. W. Pekala, “Organic aerogels from the polycondensation of resorcinol with formaldehyde”, J. Mater. Sci., 1989, 24, 3221-3227.
12. J. H. Knox, B. Kaur, G. R. Millward, “Structure and performance of porous graphitic carbon in liquid chromatography”, J. Chromatogr., 1986, 352, 3-25.
13. J. H. Knox, K. K. Unger, H. Mueller, “Prospects for carbon as packing material in high-performance liquid chromatography”, J. Liq. Chromatogr., 1983, 6, 1-36.
14. W. Guo, F. Su, X. S. Zhao, “Ordered mesostructured carbon templated by SBA-16 silica”, Carbon, 2005, 43, 2423-2426.
15. C. D. Liang, K. L. Hong, G. A. Guiochon, J. W. Mays, S. Dai, “Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers”, Angew. Chem. Int. Ed., 2004, 43, 5785-5789.
16. C. D. Liang, S. Dai, “Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction”, J. Am. Chem. Soc., 2006, 128, 5316-5317.
17. S. Tatanka, N. Nishiyama, Y. Egashira, K. Ueyama, ”Synthesis of ordered mesoporous carbons with channel structure from an organic–organic nanocomposite”, Chem. Commun., 2005, 16, 2125-2127.
18. C. G. Goltner, M. C. Weienberger, “Mesoporous organic polymers obtained by two-step nanocasting”, Acta Polymer, 1998, 49, 704-709.
19. T. Kyotani, ”Control of pore structure in carbon”, Carbon, 2000, 38, 269-286.
20. K. Sonnenburg, P. Adelhelm, M. Antonietti, B. Smarsly, R. Noske, P. Strauch, “Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques”, Phys. Chem. Chem. Phys., 2006, 8, 3561-3566.
21. J. H. Smått, N. Schüwer, M. Järn, W. Lindner, M. Lindén, “Synthesis of micrometer sized mesoporous metal oxide spheres by nanocasting”, Micropor. Mesopor. Mater., 2008, 112, 308-318.
22. R. Ryoo, S. H. Joo, S. Jun, “Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation”, J. Phys. Chem. B, 1999, 103, 7743–7746.
23. L. A. Solovyov, V. I. Zaikovskii, A. N. Shmakov, O. V. Belousov, R. Ryoo, ”Framework characterization of mesostructured carbon CMK-1 by X-ray powder diffraction and electron microscopy”, J. Phys. Chem. B, 2002, 106, 12198-12202.
24. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, ”Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure”, J. Am. Chem. Soc., 2000, 122, 10712-10713.
25. R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, “Ordered mesoporous carbons”, Adv. Mater., 2001, 13, 677-681.
26. F. Kleitz, S. H. Choi, R. Ryoo, “Cubic Ia3d large mesoporous silica: synthesis and replication to platinumnanowires, carbon nanorods and carbon nanotubes”, Chem. Commun., 2003, 17, 2136-2137.
27. R. Ryoo, S. H. Joo, S. Jun, T. Tsubakiyama, O. Terasaki, “Ordered mesoporous carbon molecular sieves by templated synthesis: the structural varieties”, Stud. Surf. Sci. Catal., 2001, 135, 150.
28. S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, “correction: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles”, Nature, 2001, 414, 470-470.
29. J. S. Lee, S. H. Joo, R. Ryoo, “Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters”, J. Am. Chem. Soc., 2002, 124, 1156-1157.
30. T. W. Kim, L. A. Solovyov, “Synthesis and characterization of large-pore ordered mesoporous carbons using gyroidal silica template”, J. Mater. Chem., 2006, 16, 1445-1455.
31. T. W. Kim, I. S. Park; R. Ryoo, “A synthetic route to ordered mesoporous carbon materials with graphitic pore walls”, Angew. Chemie., 2003, 115, 4511-4515.
32. C. H. Kim; D. K. Lee,T. J. Pinnavaia, ”Graphitic mesostructured carbon prepared from aromatic precursors”, Langmuir, 2004, 20, 5157-5159.
33. A. B. Fuertes, S. Alvarez, ”Graphitic mesoporous carbons synthesised through mesostructured silica templates”, Carbon, 2004, 42, 3049-3055.
34. A. H. Lu, F. Schüth, “Nanocasting: A versatile strategy for creating nanostructured porous materials”, Adv. Mater., 2006, 18, 1793-1805.
35. F. Q. Zhang, Y. Meng, D. Gu, Y. Yan, Z. X. Chen, B. Tu, D. Y. Zhao , “An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology”, Chem. Mater., 2006, 18, 5279-5288.
36. B. Pietro, M. Patriarca, B. Serosati, “On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries”, J. Power Sources, 1982, 8, 289-299.
37. B. Pietro, M. Patriarea, B. Scrosati, “Electrochemical investigation of the lithium-niobium disulphide organic electrolyte rechargeable cell”, Synth.Metal, 1982, 5, 1-9.
38. M. Lazzari, B. Scrosati, “A cyclable lithium organic electrolyte cell based on two intercalation electrodes”, J. Electrochem. Soc., 1980, 127, 773-774.
39. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, ”LixCoO2 (0 < x < 1): A new cathode material for batteries of high energy density”, Mater. Res. Bull., 1980, 15, 783-789 .
40. Y. S. Horn, L. Croguennec, C. Delmas, E. C. Nelson, M. A. OKeefe, “Atomic resolution of lithium ions in LiCoO2”, Nature Mater., 2003, 2, 464-467.
41. S. Levasseur, M. Menetrier, E. Suard, C. Delmas, ”Evidence for structural defects in non-stoichiometric HT-LiCoO2: electrochemical, electronic properties and 7Li NMR studies”, Solid State Ionics, 2000, 128, 11-24.
42. M. Holzapfel, C. Haak, and A. Ott, “Lithium-ion conductors of the system LiCo1−xFexO2, preparation and structural investigation”, J. Solid State Chem., 2001, 156, 470-479 .
43. T. Fang, J. G. Duh and S. R. Sheen, ”LiCoO2 cathode material coated with nano-crystallized ZnO for Li-ion batteries”, Thin Solid Films, 2004, 469-470, 361-365.
44. H. Liu, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu , “Cathode materials for lithium ion batteries prepared by sol-gel methods” J. Solid State Eletrochem., 2004, 8, 450-466.
45. C. J. Hana, W. S. Eoma, S. M. Lee, W. Il Cho, H. Jang, “Formation mechanism of alkyl dicarbonates in Li-ion cells” J. Power Sources, 2005, 144, 208-215 .
46. http://homepage3.nifty.com/mnakayama/research/research-e.htm
47. H. Berg, H. K. Rundlo, J. O. Thomas, “The LiMn2O4 to λ-MnO2 phase transition studied by in situ neutron diffraction”, Solid State Ionics, 2001, 144, 65-69 .
48. L. S. Cahill, S. C. Yin, A. Samoson, I. Heinmaa, L. F. Nazar and G. R. Goward, ”6Li NMR Studies of cation disorder and transition metal ordering in Li[Ni1/3Mn1/3Co1/3]O2 using ultrafast magic angle spinning”, Chem. Mater,. 2005, 17, 6560-6566 .
49. T. Ohzuku and Y. Makimura, “Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries”, Chem. Lett., 2001, 30, 642-643 .
50. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, ”Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries”, J. Electrochem. Soc., 1997, 144, 1188-1194.
51. http://www.powermagazine.cn/HTML/13992_1.html
52. 費定國, “鋰離子電池在電動車市場之展望”, 工業材料雜誌, 2005, 229, 141.
53. S. Lim, C. S. Yoon, J. Cho, “Synthesis of nanowire and hollow cathodes for high-performance lithium batteries”, Chem. Mater., 2008, 20, 4560-4564.
54. F. Liang, Y. Yao, Y. Dai, B. Yang, W. Ma, T. Watanabe, “Preparation of porous structure LiFePO4/C composite by template methode for lithium ion batteries”, Solid State Ionics, 2012, 214, 31-36.
55. Y. Ren, P. G. Bruce, “Mesoporous LiFePO4 as a cathode material for rechargeable lithium ion batteries”, Electrochem. Commun., 2012, 17, 60-62.
56. F. Cheng, D. Li, A. Liu, W. Li, “Controllable synthesis of high loading LiFePO4/C nanocomposites using bimodal mesoporous carbon as support for high power Li-ion battery cathodes”, J. Energy Chem., 2013, 22, 907-913.
57. M. Y. Cho, H. Kim, H. Kim, Y. S. Lim, “Size-selective synthesis of mesoporous LiFePO4/C microspheres based on nucleation and growth rate control of primary particles”, J. Mater. Chem. A, 2014, 2, 5922-5927
58. Jiajun. W, Xueliang. S, “Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries”, Energy Environ. Sci., 2012, 5, 5163-5185.
59. H. Shi, J. Barker, M. Y. Saidi, R. Koksbang, “Structure and lithium intercalation properties of synthetic and Natural graphite”, J. Electrochem. Soc, 1996, 143, 3466-3472.
60. 姚慶意、陳金銘, “鋰離子二次電池負極材料介紹”, 工業材料, 1996, 110, 57.
61. 陳金銘, “高容量碳粉材料”, 工業材料, 1997, 133, 85.
62. 楊模樺, “鋰離子二次電池負極新材料介紹-含錫氧化物”, 工業材料, 1997, 133, 81,.
63. H. Qiao, J. Li, J. Fu, D. Kumar, Q. Wei, Y. Cai, F. Huang, ”Sonochemical synthesis of ordered SnO2/CMK-3 nanocomposites and their lithium storage properties”, ACS Appl. Mater. Interfaces, 2011, 3, 3704–3708.
64. R. Z. Zhang, H. X. Dai, Y. C. Du, L. Zhang, J. G. Deng, Y. S. Xia, Z. X. Zhao, X. Meng, Y. X. Liu,”P123-PMMA dual-templating generation and unique physicochemical properties of three-dimensionally ordered macroporous iron oxides with nanovoid in the crystalline walls”, Inorg. Chem., 2011, 50, 2534–2544.
65. Z. A. Hu, Y. L. Xie, Y. X. Wang, L. P. Mo, Y. Y. Yang, Z. Y. Zhang, “Polyaniline/SnO2 nanocomposite for supercapacitor application” , Mater. Chem. Phys., 2009, 114, 990–995.
66. S. Bhattacharyya, A. Gabashvili, N. Perkas, A. Gedanken, “Sonochemical insertion of silver nanoparticals into two-dimensional mesoporous alumina”, J. Phys. Chem. C, 2007, 111, 11161–11167.
67. A. M. Seayad, D. M. Antonelli,”Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials”, Adv. Mater., 2004, 16, 765-777.
68. X. Wang, Z. Li, L.Yin, “Nanocomposites of SnO2@ordered mesoporous carbon (OMC) as anode materials for lithium-ion batteries with improved electrochemical performance”, CrystEngComm, 2013, 15, 7589–7597.
69. G. Zhou, D. W. Wang, L. Li, N. Li, F. Li, H. M. Cheng, “Nanosize SnO2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage”, Nanoscale, 2013, 5, 1576–1582.
70. G. Zhou, D. W. Wang, X. Shan, N. Li, F. Li, H. M. Chenga,” Hollow carbon cage with nanocapsules of graphitic shell/nickel core as an anode material for high rate lithium ion batteries”, J. Mater. Chem, 2012, 22, 11252–11256.
71. N. R. Srinivasan, S. Mitra and R. Bandyopadhyaya, ”Improved electrochemical performance of SnO2-mesoporous carbon hybrid as negative electrode for lithium ion battery applications”, Phys. Chem. Chem. Phys., 2014, 16, 6630-6640.
72. D. Zhou, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Strucky, “Triblock copolymer syntheses of mesopouous silica with periodic 50 to 300 angstrom pores”, Science, 1998, 279, 548–552.
73. J. A. Botas, D. P. Serrano, R. Guil-López, P. Pizarro, G. Gómez, ” Methane catalytic decomposition over ordered mesoporous carbons: A promising route for hydrogen production”, Int. J. Hydrogen Energy, 2010, 35, 9788–9794.
74. M. Kruk, M. Jaroniec, T. W. Kim, R. Ryoo, “Synthesis and characterization of hesagonally ordered carbon nanpipes”, Chem. Mater., 2003, 15, 2815-2823.
75. Jie Wang, Huolin L. Xin and Deli Wang, “Recent progress on mesoporous carbon materials for advanced energy conversion and storage”, Part. Part. Syst. Charact., 2014, 31, 515–539.
76. https://www.nsrrc.org.tw/
77. K. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R.-A. Pierotti, J. Rouquerol and T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure & Appl. Chem., 1986, 57, 603-619.
78. S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, “On a theory of the van der waals adsorption of gases”, J. Am. Chem. Soc., 1940, 62, 1723-1732.
79. 王奕凱, 邱宗明, 李秉傑合譯, 非均勻系催化原理及應用, 國立編譯館, 渤海堂文化公司, 台北, (1993).
80. E. P. Barrett, L. S. Joyner, P. P. Halenda, “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms”, J. Am. Chem. Soc., 1951, 73, 373-380.
81. S. J.Gregg; K. S. W. Sing, “Adsorption, Surface Area and Porosity”, 2nd Ed. Academic press, New York, NY, 1982.
82. G. Ertl; H. KnÖzinger; J. Weitkamp, “Handbook of Heterogeneous Catalysis”, vol 3, VCH D-69451 Weinheim, 1997, 1058.
83. http://www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter7_report.pdf https://goo.gl/HSyFKn.
84. 羅聖全; 電子顯微鏡介紹穿透式電子顯微鏡, 清華大學。
85. 羅聖全; 電子顯微鏡介紹掃描式電子顯微鏡, 清華大學。
86. T. W. Kim, F. Kleitz, B. Paul, R. Ryoo, “MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock Copolymer−Butanol−Water System”, J. Am. Chem. Soc., 2005, 127, 7601-7610.
87. Y. Sakamoto, T. W. Kim, R. Ryoo, O. Terasaki,“Three-dimensional structure of large-pore mesoporous cubic Ia d silica with complementary pores and its carbon replica by electron crystallography”, Angew. Chem. Int. Ed., 2004, 43, 5231-5234.
88. Z. X. Liu, J. L. Li, L. Wang, “LiFePO4/C composites derived from precipitated FePO4 precursor: effects of mixing processes”, Ionics, 2014, 20, 1511-1516.
89. X. Yang, Y. L. Xu, H. Zhang, “Enhanced high rate and low-temperature performances of mesoporous LiFePO4/Ketjen Black nanocomposite cathode material, ” Electrochimica Acta, 2013, 114, 259-264.
90. X. W. Lou, J. S. Chen, P. Chen,”One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible llithium storage properties”, Chem. Mater., 2009, 21, 2868-2874.
91. http://en.wikipedia.org/wiki/Scherrer_equation
92. D. Saikia, T. H. Wang, C. J. Chou, J. Fang, L. D. Tsai, H. M. Kao, ”A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries”, RSC Adv., 2015, 5, 42922-42930.
|