參考文獻 |
(1) T. Maschmeyer, F. Rey, G. Sankar, J. M. Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature, 1995, 378, 159-162.
(2) I. S. Nielsen, E. Taarning, K. Egeblad, R. Madsen, C. H. Christensen, Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst, Catal. Lett., 2007, 116, 35-40.
(3) X. Zhung, Y. Wan, C. Feng; Y. Shen, D. Zhao, Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons, Chem. Mater., 2009, 21, 706-716.
(4) C. - H. Huang, K. - P. Chang, H. - D. Ou, Y. - C. Chiang, C. - F. Wang, Adsorption of cationic dyes onto mesoporous silica, Microporous Mesoporous Mater., 2011, 141, 102-109.
(5) J. A. Aguado, J. M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica, J. Hazard. Mater., 2009, 163, 213-221.
(6) M. Machida, B. Fotoohi, Y. Amamo, T. Ohba, H. Kanoh, L. Mercier, Cadmium(II) adsorption using functional mesoporous silica and activated carbon, J. Hazard Mater., 2012, 221-222, 220-227.
(7) C. - X. Lin, S. - Z. Qiao, C. - Z. Yu, S. Ismadji, G. - Q. Lu, Periodic mesoporous silica and organosilica with controlled morphologiesas carriers for drug release, Microporous Mesoporous Mater., 2009, 117, 213-219.
(8) S.M. Solberg, C. C. Landry, Adsorption of DNA into mesoporous Silica, J. Phys. Chem. B, 2006, 110, 15261-15268.
(9) IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 57-57.
(10) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 1992, 114, 10834-10843.
(11) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 1992, 359, 710-712.
(12) J. V. Smith, W. J. Dytrych, Nets with channels of unlimited diameter, Nature, 1984, 309, 607-608.
(13) P. B. Moore, J. Shen, An X-ray structural study of cacoxenite, a mineral phosphate, Nature,1983, 306, 356-358.
(14) C. T. Kresge, W. J. Roth, The discovery of mesoporous molecular sieves from the twenty year perspective, Chem. Soc. Rev., 2013, 42, 3663-3670.
(15) D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998, 279, 548-552.
(16) G. Du, S. Lim, M. Pinault, C. Wang, F. Fang, L.D. Pfefferle, G. L. Haller, Synthesis, characterization, and catalytic performance of highly dispersed vanadium grafted SBA-15 catalyst, J. Catal., 2008, 253, 74-90.
(17) K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, Surfactants and polymers in aqueous solution, 2nd edition, Wiley, 2002, 1-562.
(18) J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, Theory of self-assembly of lipid bilayers and vesicles, BBA -Biomembranes, 1977, 470, 185-201.
(19) G. J. d. A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102, 4093-4138.
(20) F. D. Evans, H. Wennerstrom, The Colloidal Domain, 2nd ed., VHC, New York, 1999, 1-632.
(21) L. Qi, J. Ma, H. Chen, Z. Zhao, Synthesis and characterization of mixed CdS-ZnS nanoparticles in reverse micelles, Colloids Surf., A Physicochem. Eng. Asp., 1996, 111, 195-202.
(22) T. A. Fayed, M. H. Shaaban, M. N. El-Nahass, F. M. Hassan, Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection, Int. J. Chem. Appl. Bio. Sci., 2014, 1, 74-94.
(23) Q. Huo, D. I. Margolese, U. Ciesia, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Generalized synthesis of periodic
surfactant/inorganic composite materials, Nature, 1994, 368, 317-321.
(24) F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Silica-based mesoporous organic-inorganic hybrid materials, Angew. Chem.,2006, 45, 3216-3251.
(25) R. K. Iler, The Chemistry of Silica, John Wiley: New York, 1979.
(26) C. J. Brinker, Hydrolysis and condensation of silicates: effects on structure, J. Non-Cryst. Solids, 1988, 100, 31-50.
(27) S. Forster, M. Antonietti, Amphiphilic block copolymers in structure
-controlled nanomaterial hybrids, Adv. Mater., 1998, 10, 195-217.
(28) B. Chu, Structure and dynamics of block copolymer colloids, Langmuir,
1995, 11, 414-421.
(29) J. R. Lopes, W. Loh, Investigation of self-assembly and micelle polarity for a wide range of ethylene oxide−propylene oxide−ethylene oxide block copolymers in water, Langmuir, 1998, 14, 750-756.
(30) M. Almgren, W. Brown, S. Hvidt, Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution, Colloid. Polym. Sci.,1995, 273, 2-15.
(31) P. Alexandridis, J. F. Holzwarth, T. A. Hatton, Micellization of poly(ethy1ene oxide)-poly(propy1ene oxide)-poly(ethy1ene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association, Macromolecules, 1994, 27, 2414-2425.
(32) P. N. Hurter, T. A. Hatton, Langmuir, 1992, 8, 1291-1299.
(33) D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120, 6024-6036.
(34) J. - M. Kim, Y. Sakamoto, Y. - K. Hwang, Y. - U. Kwon, O. Terasaki, S. E. Park, G. D. Stucky, Structural design of mesoporous silica by micelle-packing control using blends of amphiphilic block copolymers, J. Phys. Chem. B, 2002, 106, 2552-2558.
(35) M. Hillmyer, P. M. Lipic, D. A. Hajduk, K. Almdal, F. S. Bates, Self-assembly and polymerization of epoxy resin-amphiphilic block copolymer nanocomposites, J. Am. Chem. Soc.,1997, 119, 2749-2750.
(36) G. J. d. A. A. Soler-Illia, E. L. Crepaldi, D. Grosso, C. Sanchez, Block copolymer-templated mesoporous oxides, Curr. Opin. Colloid Interface Sci., 2003, 8, 109-126.
(37) F. Kleitz, S. H. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes, Chem. Commun., 2003, 2136-2137.
(38) Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin, R. Ryoo, Direct imaging of the pores and cages of three-dimensional mesoporous materials, Nature, 2000, 408, 449-453.
(39) F. Kleitz, D. Liu, G. M. Anilkumar, I. S. Park, L. A. Solovyov, A. N. Shmakov, R. Ryoo, Large Cage Face-Centered-Cubic Fm3m Mesoporous Silica: Synthesis and Structure, J. Phys. Chem. B, 2003, 107, 14296-14300.
(40) F. Kleitz, L. A. Solovyov, G. M. Anilkumar, S. H. Choi, R. Ryoo, Transformation of highly ordered large pore silica mesophases (Fm3m, Im3m and p6mm) in a ternary triblock copolymer–butanol–water system, Chem. Commun., 2004, 1536-1537.
(41) C. Yu, Y. Yu, D. Zhao, Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer, Chem. Commun., 2000, 575-576.
(42) J. R. Matos, M. Kruk, L. P. Mercuri, M. Jaroniec, L. Zhao, T. Kamiyama, O. Terasaki, T. J. Pinnavaia, Y. Liu, Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time, J. Am. Chem. Soc., 2003, 125, 821-829.
(43) A. Steel, S.W. Carr, M. W. Anderson, 29Si solid-state NMR study of mesoporous M41S materials, Chem. Mater., 1995, 7, 1829-1832.
(44) M. - H. Kim, C. F. Blangord, A. Stein, Synthesis of ordered microporous silicates with organosulfur surface groups and their applications as solid acid catalysts, Chem. Mater., 1998, 10, 467-470.
(45) C. Lei, Y. Shin, J. Liu, E. J. Ackerman, Entrapping enzyme in a functionalized nanoporous support, J. Am. Chem. Soc., 2002, 124, 11242-11243.
(46) N. Liu, R. A. Assink, C. J. Brinker, Synthesis and characterization of highly ordered mesoporous thin films with -COOH terminated pore surfaces, Chem. Commun., 2003, 370-371.
(47) K. - Y. Ho, G. McKay, K. - L.Yeung, Selective adsorbents from ordered mesoporous silica, Langmuir, 2003, 19, 3019-3024.
(48) C. - M. Yang, B. Zibrowius, F. Schüth, A novel synthetic route for negatively charged ordered mesoporous silica, Chem. Commun. 2003, 1772-1773.
(49) C. - M. Yang, B. Zibrowius, F. Schüth, Formation of cyanide
-functionalized SBA-15 and its transformation to carboxylate
-functionalized SBA-15, Phys. Chem. Chem. Phys., 2004, 6, 2461-2467.
(50) J. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, M. Linden, On the nature of the Brønsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution, Langmuir, 2007, 23, 4315-4323.
(51) L. Han, Y. Sakamoto, O. Terasaki, Y. Li; S. Che, Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures, J. Mater. Chem., 2007, 17, 1216-1221.
(52) C. - T. Tsai, Y. - C. Pan, C. - C. Ting, S. Vetrivel, A. - S. Chiang, G. - T. Fey, H. - M. Kao, A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups, Chem. Commun., 2009, 5018-5020.
(53) C. - S. Chen, C. - C. Chen, C. - T. Chen, H. - M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chem. Commun., 2011, 47, 2288-2290.
(54) H. - M. Kao, C. - H. Chung, D. Saikia, S. - H. Liao, P. - Y. Chao, Y. - H. Chen, K. - C. Wu, Highly carboxylic-acid-functionalized ethane-bridged periodic mesoporous organosilicas : synthesis, characterization, and adsorption properties, Chem. Asian J., 2012, 7, 2111-2117.
(55) H. - Y. Wu, F. - K. Shieh, H. - M. Kao, Y. - W. Chen, J. R. Deka, S. - H. Liao, K. - C. Wu, Synthesis bifunctionalization, and remarkable adsorption performance of benzene-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acids, Chem. Eur. J., 2013, 19, 6358-6367.
(56) W. - C. Chang, J. R. Deka, H. - Y. Wu, F. - K. Shieh, S. - Y. Huang, H. - M. Kao, Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents, Appl. Catal. B: Environ., 2013, 142, 817-827.
(57) J. R. Deka, Y. - H. Lin, H. - M. Kao, Ordered cubic mesoporous silica KIT-5 functionalized with carboxylic acid groups for dye removal, RSC Adv., 2014, 4, 49061-49069.
(58) I.A. Rahman , B. Saad, S. Shaidan, E.S. S. Rizal, Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical–thermal process, Biores. Tech.,2005, 96, 1578-1583.
(59) R. Malik, D.S. Ramteke, S.R. Wate, Adsorption of malachite green on groundnut shell waste based powdered activated carbon, Waste Management, 2007, 27, 1129-1138.
(60) X. Zhuang, Y. Wan, C. Feng, Y. Shen, D. Zhao, Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons, Chem. Mater., 2009, 21, 706-716.
(61) T. Santhi, S. Manonmani, T. Smitha, Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption, J. Hazard. Mater., 2010, 179, 178-186.
(62) P. Bradder, S. K. Ling, S. Wang, S. Liu, Dye Adsorption on Layered Graphite Oxide, J. Chem. Eng. Data, 2011, 56, 138-141.
(63) R. Xu, M. Jia, Y. Zhang, F. Li, Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes, Microporous Mesoporous Mater., 2012, 149, 111-118.
(64) M. S. Derakhshan, O. Moradi, The study of thermodynamics and kinetics methyl orange and malachite green by SWCNTs, SWCNT-COOH and SWCNT-NH2 as adsorbents from aqueous solution, J. Ind. Eng. Chem., 2014, 20, 3186-3194.
(65) C. - M. Yang, P. - H. Liu, Y. - F. Ho, C. - Y. Chiu, K. - J. Chao, Highly dispersed metal nanoparticles in functionalized SBA-15, Chem. Mater., 2003, 15, 275-280.
(66) X. - G. Zhao, J. - L. Shi, B. Hu, L. - X. Zhang, Z. - L. Hua, In situ formation of silver nanoparticles inside pore channels of ordered mesoporous silica, Mater. Lett. 2004, 58, 2152-2156.
(67) Y. Zhao, Y. Qi, Y. Wei, Y. Zhang, S. Zhang, Y. Yang, Z. Liu , Incorporation of Ag nanostructures into channels of nitrided mesoporous silica, Microporous Mesoporous Mater., 2008, 111, 300-306.
(68) J. - K. Shon, S. - S. Kong, J. - M. Kim, C. - H. Ko, M. - Jin, Y. - Y. Lee, S. - H. Hwang, J. - A. Yoon, J. - N. Kim, Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity, Chem. Commun., 2009, 650-652.
(69) Y. Hao, Y. Chong, S. Li, H. Yang, Controlled synthesis of Au Nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols, J. Phys. Chem. C, 2012, 116, 6512-6519.
(70) J. R. Deka, H. - M. Kao, S. - Y. Huang, W. - C. Chang, C. - C. Ting, P. C. Rath, C. - S. Chen, Ethane-bridged periodic mesoporous organosilicas functionalized with high loadings of carboxylic acid groups: synthesis, bifunctionalization, and fabrication of metal nanoparticles, Chem. Eur. J., 2014, 20, 894-903.
(71) S. Zhang, W. Sun, L. Xu, X. Zheng, X. Chu, J. Tian, N. Wu, Y. Fan, Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7, BMC Microbiol. 2012, 12, 27-37.
(72) Y. Chi, J. Tu, M. Wang, X. Li, Z. Zhao, One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol, J. Colloid. Interf. Sci., 2014, 423, 54-59.
(73) Z. D. Pozun, S. E. Rodenbusch, E. Keller, K. Tran, W. Tang, K. J. Stevenson, G. Henkelman, A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles, J. Phys. Chem. C, 2013, 117, 7598-7604.
(74) P. Liu, M. Zhao, Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP), Appl. Surf. Sci., 2009, 255, 3989-3993.
(75) B. Naik, S. Hazra, V. S. Prasad, N. N. Ghosh, Synthesis of Ag nanoparticles within the pores of SBA15: An efficient catalyst for reduction of 4-nitrophenol, Catal. Commun., 2011, 12, 1104-1108.
(76) P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun
carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol,
Nanoscale, 2011, 3, 3357-3363.
(77) S. Xiao, W. Xu, H. Ma, X. Fang, Size-tunable Ag nanoparticles immobilized in electrospun nanofibers: synthesis, characterization, and application for catalytic reduction of 4-nitrophenol, RSC Adv., 2012, 2, 319-327.
(78) L. Ai, J. Jiang, Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel, Bioresour. Technol., 2013, 132, 374-377.
(79) X. - H. Zhao, Q. Li, X. M. Ma, Z. Xiong, F. Quan, Y. - Z. Xia, Alginate fibers embedded with silver nanoparticles as efficient catalysts for reduction of 4-nitrophenol, RSC Adv., 2015, 5, 49534-49540.
(80) C. - M. Yang, B. Zibrowius, W. Schmidt, F. Schüth, Stepwise removal of the copolymer template from mesopores and micropores in SBA-15, Chem. Mater., 2004, 16, 2918-2925.
(81) http://www.nsrrc.org.tw/
(82) S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, On a Theory of the van der Waals Adsorption of Gases, J. Am. Chem. Soc., 62. 1940, 62, 1723-1732.
(83) S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic press, New York, 1982.
(84) https://www.spectralproducts.com
(85) http://www.chemicool.com/definition/fourier_transform_infrared_
spectrometer_ftir.htm
(86) http://pharmaxchange.info/press/2011/12/ultraviolet-visible-uv-vis-
spectroscopy-principle/
(87) http://www.pharmatutor.org/articles/thermogravimetry
(88) http://www.nobelprize.org/educational/physics/microscopes/tem/
(89) http://www.photonics.com/EDU/Term.aspx?TermID=6861
(90) 高憲明, 多核固態核磁共振於孔洞材料結構鑑定之應用, 化學, 2004, 62, 285-298.
(91) 潘育麒, 廖家秀, 高憲明, 固態核磁共振技術於孔洞材料之應用, 化學, 2004, 66, 209-219.
(92) 王明光, 王敏昭, 實用儀器分析, 合記圖書出版社, 2003. 277-314
(93) M. - Y. Chang, R. - S. Juang, Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay, J. Colloid Interf. Sci., 2004, 278, 18-25.
(94) D. O′Shannessy, D. Winzor, Interpretation of deviations from pseudo-first
-order kinetic behavior in the characterization of ligand binding by
biosensor technology, J. Anal. Biochem., 1996, 236, 275-283.
(95) Y. - S. Ho, Review of second-order models for adsorption systems, J.
Hazard. Mater., 2006, 136, 681-689.
(96) P. T. Hang, G. W. Brindley, Methylene blue absorption by clay minerals. determination of surface areas and cation exchange capacities (clay-organic
studies XVIII), Clays Clay Miner., 1970, 18, 203-212.
(97) E. Castellini, R. Andreoli, G. Malavasi, A. Pedone, Deflocculant effects on the surface properties of kaolinite investigated through malachite green
adsorption, Colloid Surf. A-Physicochem. Eng. Asp., 2008, 329, 31-37.
(98) I. D. Mall, V. C. Srivastava,N. K. Agarwal, I. M. Mishra, Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses,
Colloid Surf. A-Physicochem. Eng. Asp., 2005, 264, 17-28.
(99) D. Carmona, P. Lalueza, F. Balas, M. Arruebo, J. Santamaría, Mesoporous silica loaded with peracetic acid and silver nanoparticles as a dual-effect, highly efficient bactericidal agent. Microporous Mesoporous Mater., 2012,
161, 84-90.
(100) N. Mnasri, C. Charnay, L. C. De Ménorval, Y. Moussaoui, E. Elaloui, J. Zajac, Silver nanoparticle-containing submicron-in-size mesoporous silica-based systems for iodine entrapment and immobilization from gas phase, Microporous Mesoporous Mater., 2014, 196, 305-313.
(101) M. Vinoba, S. K. Jeong, M. Bhagiyalakshmi, M. Alagar, Electrocatalytic reduction of hydrogen peroxide on silver nanoparticles stabilized by Amine grafted mesoporous SBA-15, Bull. Korean Chem. Soc., 2010, 31, 3663-3674.
(102) A. Gangula, R. Podila, R. M; L. Karanam, C. Janardhana, A. M. Rao,
Catalytic reduction of 4-nitrophenol using biogenic Gold and silver nanoparticles derived from breynia rhamnoides, Lamgmuir, 2011, 27,
15268-15274.
(103) S. Pandey, S.B. Mishra, Catalytic reduction of p-nitrophenol by using platinum nanoparticlesstabilised by guar gum, Carbohydr. Polym., 2014,
113, 525-531.
(104) S. Tang, S. Vongehr, X. Meng, Carbon spheres with controllable silver
nanoparticle doping, J. Phys. Chem. C., 2009, 114, 977-982.
(105) Y. Chi, Q. Yuan, Y. Li, J. Tu, L. Zhao, N. Li, X. Li, Synthesis of Fe3O4@SiO2-Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of
4-nitrophenol, J. Colloid. Interf. Sci., 2012, 383, 96-102.
(106) M. H. Rashid, T. K. Mandal, Synthesis and catalytic application of nanostructured silver dendrites, J. Phys. Chem. C., 2007, 111,
16750-16760.
(107) Z. Dong, X. Le, X. Li, W. Zhang, C. Dong, J. Ma, Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline,
Appl. Catal. B Environ., 2014, 158-159, 129-135.
(108) N. Sahiner, H. Ozay, O. Ozay, N. Aktas, New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols, Appl. Catal. A: Gen., 2010, 385,
201-207.
(109) N. Sahiner, H. Ozay, O. Ozay, N. Aktas, A soft hydrogel reactor for cobalt nanoparticle preparation and use in the reduction of nitrophenols, Appl.
Catal. B: Environ., 2010, 101, 137-143.
(110) N. Sahiner, O. Ozay, Enhanced catalytic activity in the reduction of 4-nitrophenol and 2-nitrophenol by p(AMPS)-Cu(0) hydrogel composite
materials, Curr. Nanosci., 2012, 8, 367-374.
|