參考文獻 |
[1] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, and E. Zanoni, "A review on the physical mechanisms that limit the reliability of GaN-based LEDs," Electron Devices, IEEE Transactions on, vol. 57, pp. 108-118, 2010.
[2] P. Raisch, R. Winterhoff, W. Wagner, M. Kessler, H. Schweizer, T. Riedl, et al., "Investigations on the performance of multiquantum barriers in short wavelength (630 nm) AlGaInP laser diodes," Applied Physics Letters, vol. 74, p. 2158, 1999.
[3] U. K. Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications," PROCEEDINGS-IEEE, vol. 90, pp. 1022-1031, 2002.
[4] D. N. Quang, N. H. Tung, V. N. Tuoc, N. V. Minh, and P. N. Phong, "Roughness-induced piezoelectric charges in wurtzite group-III-nitride heterostructures," Physical Review B, p. 115337, vol. 72, 2005.
[5] M. Posternak, A. Baldereschi, A. Catellani, and R. Resta, "Ab initiostudy of the spontaneous polarization of pyroelectric BeO," Physical Review Letters, vol. 64, pp. 1777-1780, 1990.
[6] S. Yoshida, S. Misawa, and A. Itoh, "Epitaxial growth of aluminum nitride films on sapphire by reactive evaporation," Applied Physics Letters, vol. 26, pp. 461-462, 1975.
[7] E. Yu, X. Dang, P. Asbeck, S. Lau, and G. Sullivan, "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B, vol. 17, pp. 1742-1749, 1999.
[8] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Physical Review B, vol. 56, p. R10024, 1997.
[9] T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, and P. Yang, "Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections," Nano Letters, vol. 3, pp. 1063-1066, 2003.
[10] N. Ahmed, M. Hashim, and Z. Hassan, "Effects of Si, Al2O3 and SiC substrates on the characteristics of DBRs structure for GaN based laser," Journal of Physical Science, vol. 17, pp. 151-159, 2006.
[11] S. Kukushkin, A. Osipov, V. Bessolov, B. Medvedev, V. Nevolin, and K. Tcarik, "Substrates for epitaxy of gallium nitride: new materials and techniques," Rev. Adv. Mater. Sci, vol. 17, pp. 1-32, 2008.
[12] W. Qian, M. Skowronski, and G. S. Rohrer, "Structural defects and their relationship to nucleation of GaN thin films," Mat. Res. Soc. Symp. Proc., vol. 423, p. 475, 1996.
[13] L. Liu and J. H. Edgar, "Substrates for gallium nitride epitaxy," Materials Science and Engineering: R: Reports, vol. 37, pp. 61-127, 2002.
[14] O. Ambacher, "Growth and applications of group III-nitrides," Journal of Physics D: Applied Physics, vol. 31, p. 2653, 1998.
[15] M. A. Moram, M. J. Kappers, F. Massabuau, R. A. Oliver, and C. J. Humphreys, "The effects of Si doping on dislocation movement and tensile stress in GaN films," Journal of Applied Physics, vol. 109, p. 073509, 2011.
[16] H. Sato, T. Sugahara, Y. Naoi, and S. Sakai, "Compositional inhomogeneity of InGaN grown on sapphire and bulk GaN substrates by metalorganic chemical vapor deposition," Japanese journal of applied physics, vol. 37, p. 2013, 1998.
[17] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, et al., "Pyroelectric properties of Al (In) GaN/GaN hetero-and quantum well structures," Journal of physics: condensed matter, vol. 14, p. 3399, 2002.
[18] J.-H. Ryou, P. D. Yoder, J. Liu, Z. Lochner, H. Kim, S. Choi, et al., "Control of quantum-confined stark effect in InGaN-based quantum wells," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 15, pp. 1080-1091, 2009.
[19] X. Li, X. Ni, J. Lee, M. Wu, U. Özgür, H. Morkoç, et al., "Efficiency retention at high current injection levels in m-plane InGaN light emitting diodes," Applied Physics Letters, vol. 95, p. 121107, 2009.
[20] E. F. Schubert, "Light-Emitting Diodes," Light-Emitting Diodes-2nd Edition, by E. Fred Schubert, pp. 432. Cambridge University Press, June 2006. ISBN-10: 0521865387. ISBN-13: 9780521865388. LCCN: TK7871. 89. L53. S47 2006, vol. 1, 2006.
[21] U. Lafont, H. v. Zeijl, and S. v. d. Zwaag, "Increasing the reliability of solid state lighting systems via self-healing approaches: A review," Microelectronics Reliability, vol. 52, pp. 71-89, 2012.
[22] M. Arik, J. Petroski, and S. Weaver, "Thermal challenges in the future generation solid state lighting applications: light emitting diodes," in Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on, 2002, pp. 113-120.
[23] S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, et al., "Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer," Applied Physics Letters, vol. 96, p. 221105, 2010.
[24] R.-H. Horng, C. Chiang, H. Hsiao, X. Zheng, D. Wuu, and H. Lin, "Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders," Applied Physics Letters, vol. 93, p. 111907, 2008.
[25] D. S. Meyaard, Q. Shan, Q. Dai, J. Cho, E. F. Schubert, M.-H. Kim, et al., "On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes," Applied Physics Letters, vol. 99, p. 041112, 2011.
[26] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters, vol. 91, p. 141101, 2007.
[27] M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley, "Direct measurement of auger recombination in In[sub 0.1]Ga[sub 0.9]N/GaN quantum wells and its impact on the efficiency of In[sub 0.1]Ga[sub 0.9]N/GaN multiple quantum well light emitting diodes," Applied Physics Letters, vol. 95, p. 201108, 2009.
[28] A. Laubsch, M. Sabathil, M. Strassburg, W. Bergbauer, M. Peter, H. Lugauer, et al., "Improving the high-current efficiency of LEDs," ed, 2009.
[29] I. H. Brown, I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, W. W. Chow, et al., "Determination of the piezoelectric field in InGaN quantum wells," Applied Physics Letters, vol. 86, p. 131108, 2005.
[30] L. Hsu and W. Walukiewicz, "Modeling of InGaN/Si tandem solar cells," Journal of Applied Physics, vol. 104, p. 024507, 2008.
[31] E. Hellman, "The polarity of GaN: a critical review," MRS Internet Journal of Nitride Semiconductor Research, vol. 3, p. e11, 1998.
[32] C. Wood and D. Jena, Polarization effects in semiconductors: from ab initio theory to device applications: Springer Science & Business Media, 2007.
[33] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, "Thermal stress in GaN epitaxial layers grown on sapphire substrates," Journal of applied physics, vol. 77, pp. 4389-4392, 1995.
[34] Y. C. Lin, Y. S. Liu, C. L. Chang, and C. Y. Liu, "Warpage and stress relaxation of the transferred GaN LED epi-layer on electroplated Cu substrates," Electronic Materials Letters, vol. 9, pp. 441-444, 2013.
[35] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, "Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition," Applied Physics Letters, vol. 70, p. 1089, 1997.
[36] A. Walsh and S.-H. Wei, "Theoretical study of stability and electronic structure of Li(Mg,Zn)N alloys: A candidate for solid state lighting," Physical Review B, vol. 76, 2007.
[37] A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, "First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory," Physical Review B, vol. 64, 2001.
[38] C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, et al., "Sound velocity of AlxGa1-xN thin films obtained by surface acoustic-wave measurements," Applied physics letters, vol. 72, p. 2400, 1998.
[39] B. Gao, H. Liu, Q. Kuang, W. Zhou, and L. Cao, "A novel model of photo-carrier screening effect on the GaN-based p-i-n ultraviolet detector," Science China Physics, Mechanics and Astronomy, vol. 53, pp. 793-801, 2010.
[40] P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allègre, B. Gil, et al., "High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy," Applied Physics Letters, vol. 78, p. 1252, 2001.
[41] Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, "Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells," Applied Physics Letters, vol. 79, p. 1130, 2001.
[42] C.-F. Lin, K.-T. Chen, W.-P. Tseng, B.-C. Shieh, and C.-H. Hsieh, "Reducing a Piezoelectric Field in InGaN Active Layers by Varying Pattern Sapphire Substrates," Electron Devices, IEEE Transactions on, vol. 60, pp. 4180-4184, 2013.
[43] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, et al., "Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells," Japanese Journal of Applied Physics, vol. 36, p. L382, 1997.
[44] Y. M. Park, J. K. Son, H. J. Chung, C. Sone, and Y. Park, "InGaN multiquantum well structure with a reduced internal electric field and carrier decay process by tunneling," Applied Physics Letters, vol. 95, p. 231917, 2009.
[45] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, et al., "Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect," Applied Physics Letters, vol. 73, p. 1691, 1998.
[46] H. Morkoç, S.-K. Zhang, W. Wang, R. R. Alfano, A. M. Dabiran, A. M. Wowchak, et al., "Carrier screening effect in AlGaN quantum-well avalanche photodiode," vol. 7216, pp. 72162G-72162G-5, 2009.
[47] Y. C. Lin, W. C. Liu, C. L. Chang, C. C. Chung, Y. H. Chen, and C. Y. Liu, "Internal Quantum Efficiency Enhancement by Relieving Compressive Stress of GaN-Based LED," Photonics Technology Letters, IEEE, vol. 26, pp. 1793-1796, 2014.
[48] P. G. Klemens, "Anharmonic Decay of Optical Phonons," Physical Review, vol. 148, pp. 845-848, 1966.
[49] F. Demangeot, J. Frandon, M. Renucci, O. Briot, B. Gil, and R.-L. Aulombard, "Raman determination of the phonon deformation potentials in α-GaN," MRS Internet Journal of Nitride Semiconductor Research, vol. 1, p. e23, 1996.
[50] A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, "Micro-Raman characterization of InxGa1−xN/GaN/Al2O3 heterostructures," Physical Review B, vol. 72, p. 155336, 2005.
[51] A. F. Wright, "Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN," Journal of Applied Physics, vol. 82, p. 2833, 1997.
[52] M. Moram, Z. Barber, and C. Humphreys, "Accurate experimental determination of the Poisson’s ratio of GaN using high-resolution x-ray diffraction," Journal of applied physics, vol. 102, p. 023505, 2007.
[53] M. Giehler, M. Ramsteiner, P. Waltereit, O. Brandt, K. H. Ploog, and H. Obloh, "Influence of heteroepitaxy on the width and frequency of the E[sub 2] (high)-phonon line in GaN studied by Raman spectroscopy," Journal of Applied Physics, vol. 89, p. 3634, 2001.
[54] M. A. Moram, C. S. Ghedia, D. V. S. Rao, J. S. Barnard, Y. Zhang, M. J. Kappers, et al., "On the origin of threading dislocations in GaN films," Journal of Applied Physics, vol. 106, p. 073513, 2009.
[55] M. A. Moram, M. J. Kappers, F. Massabuau, R. A. Oliver, and C. J. Humphreys, "The effects of Si doping on dislocation movement and tensile stress in GaN films," Journal of Applied Physics, vol. 109, p. 073509, 2011.
[56] I. Ahmad, "Dependence of the stress–temperature coefficient on dislocation density in epitaxial GaN grown on α-Al[sub 2]O[sub 3] and 6H–SiC substrates," Journal of Applied Physics, vol. 95, p. 1692, 2004.
[57] A. Bonfiglio, M. Lomascolo, G. Traetta, R. Cingolani, A. Di Carlo, F. Della Sala, et al., "Well-width dependence of the ground level emission of GaN/AlGaN quantum wells," Journal of Applied Physics, vol. 87, p. 2289, 2000.
[58] J. Li, S. Li, and J. Kang, "Quantized level transitions and modification in InGaN∕GaN multiple quantum wells," Applied Physics Letters, vol. 92, p. 101929, 2008.
[59] K. S. Ramaiah, Y. K. Su, S. J. Chang, C. H. Chen, F. S. Juang, H. P. Liu, et al., "Studies of InGaN∕GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 85, p. 401, 2004.
|