參考文獻 |
(1) T.-A. Fayed, M.-H. Shaaban, M.-N. El-Nahass, and F.-M. Hassan, Hybrid organic-inorganic mesoporous silicates as optical nanosensor for toxic metals detection, Int. J. Chem. Appl. Biol. Sci., 2014, 1, 74-79.
(2) C. Namasivayam, and D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes and Pigments, 2002, 54, 47-58.
(3) C. Brasquet, and P. Le-Cloirec, Adsorption onto activated carbon fibers: application to water and air treatments, Carbon, 1997, 35, 1307-1313.
(4) N.-K. Raman, and M.-T. Anderson, Template-based approaches to the preparation of amorphous, nanoporous silicas, Chem. Mater., 1996, 8, 1682-1701.
(5) F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, Silica‐based mesoporous organic–inorganic hybrid materials, Angew. Chem. Int. Ed., 2006, 45, 3216-3251.
(6) Z. Yan, S.-Y. Tao, J.-X. Yin, and G.-T. Li, Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs, J. Mater. Chem., 2006, 16, 2347-2353.
(7) H.-Y. Wu, F.-K. Shieh, H.-M. Kao, Y.-W. Chen, J.-R. Deka, S.-H. Liao, and K.C.-W. Wu, Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene‐Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids, Chem. Eur. J., 2013, 19, 6358-6367.
(8) C.-S. Chen, C.-C. Chen, C.-T. Chen, and H.-M. Kao, Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups, Chem. Commun., 2011, 47, 2288-2290.
(9) A. Arencibia, J. Aguado, and J.-M. Arsuaga, Regeneration of thiol-functionalized mesostructured silica adsorbents of mercury, Appl. Surf. Sci., 2010, 256, 5453-5457.
(10) S. Wang, D.-G. Choi, and S.-M. Yang, Incorporation of CdS nanoparticles inside ordered mesoporous silica SBA-15 via ion exchange, Adv. Mater., 2002, 14, 1311-1314.
(11) F.-R. Wang, J.-Q. Yang, and K.-B. Wu, Mesoporous silica-based electrochemical sensor for sensitive determination of environmental hormone bisphenol A, Anal. Chim. Acta, 2009, 638, 23-28.
(12) A. Stein, B.-J. Melde, and R.-C. Schroden, Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age, Adv. Mater., 2000, 12, 1403-1419.
(13) A.-P. Wight, and M.-E. Davis, Design and preparation of organic-inorganic hybrid catalysts, Chem. Rev., 2002, 102, 3589-3614.
(14) N. Pal, and A. Bhaumik, Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic–inorganic hybrid and purely organic solids, Adv. Colloid Interface Sci., 2013, 189, 21-41.
(15) N. Hao, L. Han, Y.-X. Yang, H.-T. Wang, P.-A. Webley, and D.-Y. Zhao, A metal-ion-assisted assembly approach to synthesize disulfide-bridged periodical mesoporous organosilicas with high sulfide contents and efficient adsorption, Appl. Surf. Sci., 2010, 256, 5334-5342.
(16) D.-A. Loy, Sol-gel processing of hybrid organic-inorganic materials based on polysilsesquioxanes, Wiley, 2006,
(17) B. Hatton, K. Landskron, W. Whitnall, D. Perovic, and G.-A. Ozin, Past, present, and future of periodic mesoporous organosilicas the PMOs, Acc. Chem. Res., 2005, 38, 305-312.
(18) T.-F. Tadros, Surfactants, Academic Press, 1984.
(19) E.-R. Riegel, and J.-A. Kent, Riegel′s Handbook of Industrial Chemistry, 2003, 353, 851-854.
(20) B. Chu, Structure and dynamics of block copolymer colloids, Langmuir, 1995, 11, 414-421.
(21) M. Almgren, W. Brown, and S. Hvidt, Self-aggregation and phase behavior of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymers in aqueous solution, Colloid. Polym. Sci, 1995, 273, 2-15.
(22) P. Alexandridis, J.-F. Holzwarth, and T.-A. Hatton, Micellization of poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association, Macromolecules, 1994, 27, 2414-2425.
(23) D.-F. Evans, and H. Wennerström, The Colloidal Domain: Where physics, chemistry, biology, and technology meet, 2nd Edition, Wiley, 1999, 2, 193-197.
(24) D.-Y. Zhao, Q.-S. Huo, J.-L. Feng, B.-F. Chmelka, and G.-D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, 120, 6024-6036.
(25) G. Wanka, H. Hoffmann, and W. Ulbricht, Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions, Macromolecules, 1994, 27, 4145-4159.
(26) 簡振龍, 陰/陽離子界面活性劑的混合增效作用之研究, 2000.
(27) C.-F. Karayigitoglu, M. Tata, V.-T. John, and G.-L. McPherson, Modifications of CdS nanoparticle characteristics through synthesis in reversed micelles and exposure to enhanced gas pressures and reduced temperatures, Colloids Surf., A, 1994, 82, 151-162.
(28) G.-H. Findenegg, Intermolecular and surface forces, Academic Press, 1986, 90, 1241-1242.
(29) K. Holmberg, B. Jönsson, B. Kronberg, and B. Lindman, Surfactants and polymers in aqueous solution, J. Synthetic. Lubric, 2004, 20, 367-370.
(30) G.-J.-D.-A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures, Chem. Rev., 2002, 102, 4093-4138.
(31) H.-P. Lin, and C.-Y. Mou, Structural and morphological control of cationic surfactant-templated mesoporous silica, Acc. Chem. Res., 2002, 35, 927-935.
(32) U. Schubert, and N. Husing, Synthesis of inorganic materials, Wiley, 2000, chapter 4.
(33) Y.-C. Hu, Z.-Z. Zhi, Q.-F. Zhao, C. Wu, P. Zhao, H. Jiang, T.-Y. Jiang, and S.-l. Wang, 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol, Microporous Mesoporous Mater., 2012, 147, 94-101.
(34) N. Singh, A. Karambelkar, L. Gu, K. Lin, J.-S. Miller, C.-S. Chen, M.-J. Sailor, and S.-N. Bhatia, Bioresponsive mesoporous silica nanoparticles for triggered drug release, J. Am. Chem. Soc., 2011, 133, 19582-19585.
(35) L. Yuan, Q.-Q. Tang, D. Yang, J.-Z. Zhang, F.-Y. Zhang, and J.-H. Hu, Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery, J. Phys. Chem. C, 2011, 115, 9926-9932.
(36) Z. Lin, J.-Z. Li, H.-Y. He, H.-H. Kuang, X.-S. Chen, Z.-G. Xie, X.-B. Jing, and Y.-B. Huang, Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery, RSC Adv., 2015, 5, 9546-9555.
(37) W.-H. Peng, Y.-Y. Lee, C. Wu, and K.C.-W. Wu, Acid–base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion, J. Mater. Chem., 2012, 22, 23181-23185.
(38) Y.-C. Lee, C.-T. Chen, Y.-T. Chiu, and K.C.-W. Wu, An effective cellulose‐to‐glucose‐to‐fructose conversion sequence by using enzyme immobilized Fe3O4‐loaded mesoporous silica nanoparticles as recyclable biocatalysts, ChemCatChem, 2013, 5, 2153-2157.
(39) S. Dutta, H.-M. Kao, and K.C.-W. Wu, Effect of carboxylic acid of periodic mesoporous organosilicas on the fructose-to-5-hydroxymethylfurfural conversion in dimethylsulfoxide systems, APL Materials, 2014, 2, 113314.
(40) Y.-J. Hao, Y.-J. Chong, S.-R. Li, and H.-Q. Yang, Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols, J. Phys. Chem. C, 2012, 116, 6512-6519.
(41) Y.-X. Liu, C. Tian, B. Yan, Q.-Y. Lu, Y.-J. Xie, J. Chen, R. Gupta, Z.-H. Xu, S.-M. Kuznicki, and Q.-X. Liu, Nanocomposites of graphene oxide, Ag nanoparticles, and magnetic ferrite nanoparticles for elemental mercury (Hg 0) removal, RSC Adv., 2015, 5, 15634-15640.
(42) M. Appell, M.-A. Jackson, and M.-A. Dombrink-Kurtzman, Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15, J. Hazard. Mater., 2011, 187, 150-156.
(43) X.-L. Zheng, Y. Liu, M. Pan, X.-Q. Lü, J.-Y. Zhang, C.-Y. Zhao, Y.-X. Tong, and C.-Y. Su, Bright blue‐emitting Ce3+ complexes with encapsulating polybenzimidazole tripodal ligands as potential electroluminescent devices, Angew. Chem., 2007, 119, 7543-7547.
(44) G.-F.-de. Sa, and O.-L. Malta, Spectroscopic properties and design of highly luminescent lanthanide coordination complexes, Coord. Chem. Rev., 2000, 196, 165-195.
(45) F. Enrichi, Luminescent amino‐functionalized or erbium‐doped silica spheres for biological applications, Ann. N.Y. Acad. Sci., 2008, 1130, 262-266.
(46) H. Yu, L. Xia, and X.-T. Dong, Studies on preparation and luminescent character of Er3+ / Zn2+-(SBA-15) composite materials, J. Lumin., 2015, 158, 220-225.
(47) W. Yantasee, G.-E. Fryxell, R.-S. Addleman, R.-J. Wiacek, K. Pattamakomsan, V. Sukwarotwat, J. Xu, and K.-N. Raymond, Selective removal of lanthanides from natural waters, acidic streams and dialysate, J. Hazard. Mater., 2009, 168, 1233-1238.
(48) S.-S. Chang, T.-H. Lu, M. Eddleston, F. Konradsen, J.-A. Sterne, J.-J. Lin, and D. Gunnell, Factors associated with the decline in suicide by pesticide poisoning in Taiwan: a time trend analysis, 1987-2010, Clinical toxicology, 2012, 50, 471-480.
(49) F.-K. Shieh, C.-T. Hsiao, J.-W. Wu, Y.-C. Sue, Y.-L. Bao, Y.-H. Liu, L. Wan, M.-H. Hsu, J.-R. Deka, and H.-M. Kao, A bioconjugated design for amino acid-modified mesoporous silicas as effective adsorbents for toxic chemicals, J. Hazard. Mater., 2013, 260, 1083-1091.
(50) W.-C. Chang, J.R. Deka, H.-Y. Wu, F.-K. Shieh, S.-Y. Huang, and H.-M. Kao, Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents, Appl. Catal., B, 2013, 142, 817-827.
(51) M. Brigante, and M. Avena, Synthesis, characterization and application of a hexagonal mesoporous silica for pesticide removal from aqueous solution, Microporous Mesoporous Mater., 2014, 191, 1-9.
(52) R.-J. Corriu, L. Datas, Y. Guari, A. Mehdi, C. Reyé, and C. Thieuleux, Ordered SBA-15 mesoporous silica containing phosphonic acid groups prepared by a direct synthetic approach, Chem. Commun., 2001, 8, 763-764.
(53) Q. Yang, J. Yang, J. Liu, Y. Li, and C. Li, Synthesis and characterization of phosphonic acid functionalized organosilicas with bimodal nanostructure, Chem. Mater., 2005, 17, 3019-3024.
(54) P. Wang, L. Zhao, R.A. Wu, H. Zhong, H. Zou, J. Yang, and Q. Yang, Phosphonic acid functionalized periodic mesoporous organosilicas and their potential applications in selective enrichment of phosphopeptides, J. Phys. Chem. C, 2009, 113, 1359-1366.
(55) Y.-L. Wang, L. Zhu, B.-L. Guo, S.-W. Chen, and W.-S. Wu, Mesoporous silica SBA-15 functionalized with phosphonate derivatives for uranium uptake, New J. Chem., 2014, 38, 3853-3861.
(56) S. Inagaki, S. Guan, T. Ohsuna, and O. Terasaki, An ordered mesoporous organosilica hybrid material with a crystal-like wall structure, Nature, 2002, 416, 304-307.
(57) N. Bion, P. Ferreira, A. Valente, I.S. Gonçalves, and J. Rocha, Ordered benzene–silica hybrids with molecular-scale periodicity in the walls and different mesopore sizes, J. Mater. Chem., 2003, 13, 1910-1913.
(58) M.P. Kapoor, Q. Yang, and S. Inagaki, Organization of phenylene-bridged hybrid mesoporous silisesquioxane with a crystal-like pore wall from a precursor with nonlinear symmetry, Chem. Mater., 2004, 16, 1209-1213.
(59) M.P. Kapoor, N. Setoyama, Q. Yang, M. Ohashi, and S. Inagaki, Oligomeric polymer surfactant driven self-assembly of phenylene-bridged mesoporous materials and their physicochemical properties, Langmuir, 2005, 21, 443-449.
(60) Y. Goto, and S. Inagaki, Mesoporous phenylene–silica hybrid materials with 3D-cage pore structures, Microporous Mesoporous Mater., 2006, 89, 103-108.
(61) J.R. Deka, C.-L. Liu, T.-H. Wang, W.-C. Chang, and H.-M. Kao, Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents, J. Hazard. Mater., 2014, 278, 539-550.
(62) V. Zelenak, D. Halamova, L. Gaberova, E. Bloch, and P. Llewellyn, Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties, Microporous Mesoporous Mater., 2008, 116, 358-364.
(63) Y. Goto, and S. Inagaki, Synthesis of large-pore phenylene-bridged mesoporous organosilica using triblock copolymer surfactant, Chem. Commun., 2002, 2410-2411.
(64) S. Brunauer, L.-S. Deming, W.-E. Deming, and E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 1940, 62, 1723-1732.
(65) 王奕凱, 李秉傑合譯, 非均勻系催化原理及應用, 國立編譯館, 博海堂文化公司, 1993.
(66) E.-P. Barrett, L.-G. Joyner, and P.-P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 1951, 73, 373-380.
(67) S.-J. Gregg, K.-S.-W. Sing, and H. Salzberg, Adsorption surface area and porosity, J. Electrochem. Soc., 1967, 114, 279.
(68) G. Ertl, H. Knözinger, and J. Weitkamp, Handbook of heterogeneous catalysis, 1997.
(69) www.slvs.tc.edu.tw/125/20120919020307.
(70) 劉銘璋, 林岱瑋, 王漢松, and 張秋玲, 第七章熱分析, 台灣大學化學系.
(71) 羅聖全, 電子顯微鏡介紹-掃描式電子顯微鏡.
(72) 高憲明, 多核固態核磁共振於孔洞材料結構鑑定之應用, The Chinese Chem. SOC., Taipei, 2004, 62, 285-298.
(73) A.-E. Bennett, C.-M. Rienstra, M. Auger, K. Lakshmi, and R.-G. Griffin, Heteronuclear decoupling in rotating solids, J. Phys. Chem., 1995, 103, 6951-6958.
(74) http://www.aandb.com.tw/paage0004/uv_cis_nir_04_lambda_750.html.
(75) R. Qadeer, Adsorption of erbium ions on activated charcoal from aqueous solutions, Colloids Surf., A, 2005, 254, 17-21.
(76) L.-Y. Yuan, Z.-Q. Bai, R. Zhao, Y.-L. Liu, Z.-J. Li, S.-Q. Chu, L.-R. Zheng, J. Zhang, Y.-L. Zhao, and Z.-F. Chai, Introduction of bifunctional groups into mesoporous silica for enhancing uptake of thorium (IV) from aqueous solution, ACS Appl. Mat. Interfaces., 2014, 6, 4786-4796.
(77) M.-R. Mirza, M. Rainer, Y. Güzel, I.-M. Choudhary, and G.K. Bonn, A novel strategy for phosphopeptide enrichment using lanthanide phosphate co-precipitation, Anal. Bioanal. Chem., 2012, 404, 853-862.
(78) M. Brigante, and M. Avena, Synthesis, characterization and application of a hexagonal mesoporous silica for pesticide removal from aqueous solution, Microporous Mesoporous Mater., 2014, 191, 1-9.
(79) W. Morris, C.J. Doonan, H. Furukawa, R. Banerjee, and O.-M. Yaghi, Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks, J. Am. Chem. Soc., 2008, 130, 12626-12627.
(80) F.K. Shieh, S.C. Wang, S.Y. Leo, and K.C.W. Wu, Water‐based synthesis of zeolitic imidazolate framework‐90 (ZIF‐90) with a controllable particle size, Chem. Eur. J., 2013, 19, 11139-11142.
(81) P. Raveendran, Y. Ikushima, and S.L. Wallen, Polar attributes of supercritical carbon dioxide, Acc. Chem. Res., 2005, 38, 478-485.
(82) T.-H. Bae, J.-S. Lee, W. Qiu, W.-J. Koros, C.-W. Jones, and S. Nair, A high‐performance gas‐separation membrane containing submicrometer‐sized metal–organic framework crystals, Angew. Chem. Int. Ed., 2010, 49, 9863-9866.
(83) C. Zlotea, R. Campesi, F. Cuevas, E. Leroy, P. Dibandjo, C. Volkringer, T. Loiseau, G. Férey, and M. Latroche, Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties, J. Am. Chem. Soc., 2010, 132, 2991-2997.
(84) Y.E. Cheon, J. Park, and M.-P. Suh, Selective gas adsorption in a magnesium-based metal–organic framework, Chem. Commun., 2009, 5436-5438.
(85) A. Corma, H. Garcia, and F.-L. Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chem. Rev., 2010, 110, 4606-4655.
(86) L. He, Y. Liu, J. Liu, Y. Xiong, J. Zheng, Y. Liu, and Z. Tang, Core–shell noble‐metal@metal‐organic‐framework nanoparticles with highly selective sensing property, Angew. Chem. Int. Ed., 2013, 52, 3741-3745.
(87) M. Müller, S. Hermes, K. Kähler, and R.-A. Fischer, Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis, Chem. Mater., 2008, 20, 4576-4587.
(88) S. Hermes, M.-K. Schröter, R. Schmid, L. Khodeir, M. Muhler, A. Tissler, R.-W. Fischer, and R.-A. Fischer, Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition, Angew. Chem. Int. Ed., 2005, 44, 6237-6241.
(89) Y.-K. Hwang, D.-Y. Hong, J.-S. Chang, S.-H. Jhung, Y.-K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, and G. Férey, Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation, Angew. Chem. Int. Ed., 2008, 47, 4144-4148.
(90) M. Sabo, A. Henschel, H. Fröde, E. Klemm, and S. Kaskel, Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem., 2007, 17, 3827-3832.
(91) M. Zahmakiran, Iridium nanoparticles stabilized by metal organic frameworks (IrNPs@ZIF-8): synthesis, structural properties and catalytic performance, Dalton Trans., 2012, 41, 12690-12696.
(92) C. Rösler, and R.-A. Fischer, Metal–organic frameworks as hosts for nanoparticles, CrystEngComm, 2015, 17, 199-217.
(93) G. Lu, S. Li, Z. Guo, O.-K. Farha, B.-G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, and X. Liu, Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation, Nature, 2012, 4, 310-316.
(94) X. Cheng, M. Liu, A. Zhang, S. Hu, C. Song, G. Zhang, and X. Guo, Size-controlled silver nanoparticles stabilized on thiol-functionalized MIL-53 (Al) frameworks, Nanoscale, 2015, 7, 9738-9745.
(95) P. Adhyapak, P. Karandikar, K. Vijayamohanan, A. Athawale, and A. Chandwadkar, Synthesis of silver nanowires inside mesoporous MCM-41 host, Mater. Lett., 2004, 58, 1168-1171.
|