參考文獻 |
1. Kundu, D., Talaie, E., Duffort, V., and Nazar, L., The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angewandte Chemie International Edition, 2015. 54(11): p. 3431-3448.
2. Palomares, V., Serras, P., Villaluenga, I., Hueso, K., Carretero-González, J., and Rojo, T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012. 5(3): p. 5884-5901.
3. 劉峰其, 非線性鋰電池之充放電模型(碩士論文); Nonlinear lithium battery models for battery charging and discharging. 2010.
4. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science, 2011. 334(6058): p. 928-935.
5. Han-Xi, Y. and Q. Jiang-Feng, Recent development of aqueous sodium ion batteries and their key materials. Journal of Inorganic Materials, 2013. 28(11): p. 1165-1171.
6. Liu, F.-C., 非線性鋰電池之充放電模型(碩士論文). 2010.
7. 楊建華 and 曹佳弟, 鈉硫電池電極結構改進與電池性能研究 ①. 電化學, 1996. 2(2).
8. 潘慈暉 and 盧司坤, 鎳氫及鋰離子二次電池市場分析. 1998.
9. 吳玉祥, 吳俊霖, and 張晏銘, 鋰離子二次電池負極材料表面改質之發展與改良. Journal of China Institute of Technology, 2004. 31.
10. Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica Acta, 2006. 51(26): p. 5567-5580.
11. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., and Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 2003(1): p. 70-71.
12. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., and Duarte, A.R.C., Natural deep eutectic solvents–solvents for the 21st century. ACS Sustainable Chemistry & Engineering, 2014. 2(5): p. 1063-1071.
13. Zaidi, W., L. Timperman, and M. Anouti, Deep eutectic solvent based on sodium cations as an electrolyte for supercapacitor application. RSC Advances, 2014. 4(86): p. 45647-45652.
14. Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Research development on sodium-ion batteries. Chemical Reviews, 2014. 114(23): p. 11636-11682.
15. Pan, H., Y.-S. Hu, and L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013. 6(8): p. 2338-2360.
16. Ellis, B.L. and L.F. Nazar, Sodium and sodium-ion energy storage batteries. Current Opinion in Solid State and Materials Science, 2012. 16(4): p. 168-177.
17. Hui, L., Chuan, W., Feng, W., and Ying, B., Sodium ion battery: a promising energy-storage candidate for supporting renewable electricity. Acta Chimica Sinica, 2014. 72(1): p. 21-29.
18. 潘慧霖, 胡勇勝, 李泓, and 陳立泉, 室溫鈉離子儲能電池電極材料結構研究進展. 中國科學: 化學, 2014. 8: p. 1269-1279.
19. Komaba, S., Kubota, K., Dahbi, M., and Tokiwa, K., Rechargeable Na-ion batteries for large format applications. in Renewable and Sustainable Energy Conference (IRSEC), 2014 International. 2014. IEEE.
20. Wang, L.P., Yu, L., Wang, X., Srinivasan, M., and Xu, Z.J., Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015.
21. Kim, S.W., Seo, D., Ma, X., Ceder, G., and Kang, K., Electrode materials for rechargeable sodium‐ion batteries: potential alternatives to current lithium‐ion batteries. Advanced Energy Materials, 2012. 2(7): p. 710-721.
22. 潘慧霖, 胡勇勝, 李泓, and 陳立泉, 室溫鈉離子儲能電池電極材料結構研究進展. 中國科學 化學 (中文版), 2014. 44(8): p. 1269-1279.
23. 吳采羚, 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究(碩士論文); Synthesis and characterization of SnS2 anode material for Li ion battery. 2014.
24. 錢江鋒, 高學平, and 楊漢西, 電化學儲鈉材料的研究進展. 電化學, 2013. 19(006): p. 523-529.
25. Park, S.I., Gocheva, I., Okada, S., and Yamaki, J., Electrochemical properties of NaTi2 (PO4)3 anode for rechargeable aqueous sodium-ion batteries. Journal of The Electrochemical Society, 2011. 158(10): p. A1067-A1070.
26. Slater, M.D., Kim, D., Lee, E., and Johnson, C.S., Sodium‐ion batteries. Advanced Functionalmaterials, 2013. 23(8): p. 947-958.
27. Ponrouch, A., Monti, D., Boschin, A., Steen, B., Johansson, P., and Palacín, M., Non-aqueous electrolytes for sodium-ion batteries. Journal of Materials Chemistry A, 2015. 3(1): p. 22-42.
28. Endres, F. and S.Z. El Abedin, Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 2006. 8(18): p. 2101-2116.
29. Qu, Q., Shi, Y., Tian, S., Chen, Y., Wu, Y., and Holze, R., A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2. Journal of Power Sources, 2009. 194(2): p. 1222-1225.
30. Whitacre, J., A. Tevar, and S. Sharma, Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device. Electrochemistry Communications, 2010. 12(3): p. 463-466.
31. Li, Z., Young, D., Xiang, K., Carter, W.C., and Chiang, Y., Towards high power high energy aqueous sodium‐ion batteries: The NaTi2(PO4)3/Na0. 44MnO2 System. Advanced Energy Materials, 2013. 3(3): p. 290-294.
32. Wu, X., Cao, Y., Ai, X., Qian, J., and Yang, H., A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochemistry Communications, 2013. 31: p. 145-148.
33. Luo, J.-Y., Cui, W., He, P., and Xia, Y., Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature Chemistry, 2010. 2(9): p. 760-765.
34. Ponrouch, A., Dedryvère, R., Monti, D., Demet, A.E., Mba, J.M.A., Croguennec, L., Masquelier, C., Johansson, P., and Palacín, M.R., Towards high energy density sodium ion batteries through electrolyte optimization. Energy & Environmental Science, 2013. 6(8): p. 2361-2369.
35. Bhide, A., Hofmann, J., Dürr, A.K., Janek, J., and Adelhelm, P., Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2. Physical Chemistry Chemical Physics, 2014. 16(5): p. 1987-1998.
36. Gocheva, I.D., Nishijima, M., Doi, T., Okada, S., Yamaki, J., and Nishida, T., Mechanochemical synthesis of NaMF3 (M= Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries. Journal of Power Sources, 2009. 187(1): p. 247-252.
37. Recham, N., Chotard, J., Dupont, L., Djellab, K., Armand, M., and Tarascon, J., Ionothermal synthesis of sodium-based fluorophosphate cathode materials. Journal of the Electrochemical Society, 2009. 156(12): p. A993-A999.
38. Berthelot, R., D. Carlier, and C. Delmas, Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nature Materials, 2011. 10(1): p. 74-80.
39. Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., and Komaba, S., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nature Materials, 2012. 11(6): p. 512-517.
40. Xia, X. and J. Dahn, NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochemical and Solid-State Letters, 2011. 15(1): p. A1-A4.
41. Thomas, P., J. Ghanbaja, and D. Billaud, Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Electrochimica Acta, 1999. 45(3): p. 423-430.
42. Thomas, P. and D. Billaud, Electrochemical insertion of sodium into hard carbons. Electrochimica Acta, 2002. 47(20): p. 3303-3307.
43. Moreau, P., Guyomard, D., Gaubicher, J., and Boucher, F., Structure and stability of sodium intercalated phases in olivine FePO4. Chemistry of Materials, 2010. 22(14): p. 4126-4128.
44. Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J., and Prakash, A., Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials, 2012. 24(10): p. 1846-1853.
45. Alcántara, R., J.J. Mateos, and J. Tirado, Negative electrodes for lithium-and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000 C. Journal of The Electrochemical Society, 2002. 149(2): p. A201-A205.
46. Cao, Y., Xiao, L., Wang, W., Choi, D., Nie, Z., Yu, J., Saraf, L.V., Yang, Z., and Liu, J., Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Advanced Materials, 2011. 23(28): p. 3155-3160.
47. Barker, J., M. Saidi, and J. Swoyer, A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochemical and Solid-state Letters, 2003. 6(1): p. A1-A4.
48. Alcántara, R., Jiménez-Mateos, J.M., Lavela, P., and Tirado, J.L., Carbon black: a promising electrode material for sodium-ion batteries. Electrochemistry Communications, 2001. 3(11): p. 639-642.
49. Alcántara, R., Lavela, P., Ortiz, G.F.,Tirado, J.L., Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochemical and Solid-State Letters, 2005. 8(4): p. A222-A225.
50. Zhuo, H., Wang, X., Tang, A., Liu, Z., Gamboa, S., and Sebastian, P., The preparation of NaV1− xCrxPO4F cathode materials for sodium-ion battery. Journal of Power Sources, 2006. 160(1): p. 698-703.
51. Liu, H., Zhou, H., Chen, L., Tang, Z., and Yang, W., Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. Journal of Power Sources, 2011. 196(2): p. 814-819.
52. Stevens, D. and J. Dahn, High capacity anode materials for rechargeable sodium‐ion batteries. Journal of the Electrochemical Society, 2000. 147(4): p. 1271-1273.
53. Vidal-Abarca, C., Lavela, P., Tirado, J., Chadwick, A., Alfredsson, M., and Kelder, E., Improving the cyclability of sodium-ion cathodes by selection of electrolyte solvent. Journal of Power Sources, 2012. 197: p. 314-318.
54. Shacklette, L., T. Jow, and L.d. Townsend, rechargeable electrodes from sodium cobalt bronzes. Journal of The Electrochemical Society, 1988. 135(11): p. 2669-2674.
55. Wenzel, S., Hara, T., Janek, J., and Adelhelm, P., Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci., 2011. 4(9): p. 3342-3345.
56. Stevens, D. and J. Dahn, An In situ small‐aAngle X‐ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. Journal of The Electrochemical Society, 2000. 147(12): p. 4428-4431.
57. Ellis, L.D., T.D. Hatchard, and M.N. Obrovac, reversible insertion of sodium in tin. Journal of the Electrochemical Society, 2012. 159(11): p. A1801-A1805.
58. Ryu, H., Kim, T., Kim, K., Ahn, J., Nam, T., Wang, G., and Ahn, H., Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte. Journal of Power Sources, 2011. 196(11): p. 5186-5190.
59. Hartmann, P., Bender, C.L., Sann, J. Dürr, A.K., Jansen, M., Janek, J., and Adelhelm, P., A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Physical Chemistry Chemical Physics, 2013. 15(28): p. 11661-11672.
60. Hartmann, P., Bender, C.L., Sann, J. Dürr, A.K., Jansen, M., Janek, J., and Adelhelm, P., A rechargeable room-temperature sodium superoxide (NaO2) battery. Nature Materials, 2013. 12(3): p. 228-232.
61. Wenzel, S., Metelmann, H., Raiß, C., Dürr, A.K., Janek, J., and Adelhelm, P., Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. Journal of Power Sources, 2013. 243: p. 758-765.
62. Seddon, K.R., A. Stark, and M.-J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure and Applied Chemistry, 2000. 72(12): p. 2275-2287.
63. 蔡茹雅, 離子液體在酵素催化聚合聚苯胺的應用(碩士論文). 2010.
64. 劉盈昌, 以氯化金屬和氯化膽鹼組成的離子液體為電解質之鋅銅電池的研究(碩士論文). 2008.
65. 劉伶, 離子液體在電池中的應用. 黑龍江科技資訊, 2015. 11: p. 004.
66. 代克化, 毛景, and 翟玉春, 離子液體用作鋰離子電池電解質溶液的研究綜述. 2012.
67. Anastas, P. and J. Warner, Green chemistry. Frontiers, 1998.
68. 陳志剛, 宗敏華, and 顧振新, 離子液體毒性, 生物降解性及綠色離子液體的設計與合成. 有機化學, 2009. 29(5): p. 672-680.
69. Noda, A. and M. Watanabe, Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochimica Acta, 2000. 45(8): p. 1265-1270.
70. Nishida, T., Y. Tashiro, and M. Yamamoto, Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. Journal of Fluorine Chemistry, 2003. 120(2): p. 135-141.
71. Bonhote, P., Dias, A., Papageorgiou, N., Kalyanasundaram, K., and Grätzel, M., Hydrophobic, highly conductive ambient-temperature molten salts. Inorganic Chemistry, 1996. 35(5): p. 1168-1178.
72. Hodge, I.M., Strong and fragile liquids—a brief critique. Journal of Non-crystalline Solids, 1996. 202(1): p. 164-172.
73. Dzyuba, S.V. and R.A. Bartsch, Influence of structural variations in 1‐alkyl (aralkyl)‐3‐methylimidazolium hexafluorophosphates and bis (trifluoromethylsulfonyl) imides on physical properties of the ionic liquids. ChemPhysChem, 2002. 3(2): p. 161-166.
74. MacFarlane, D., Meakin, P., Sun, J., Amini, N., amd Forsyth, M., Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. The Journal of Physical Chemistry B, 1999. 103(20): p. 4164-4170.
75. Barisci, J., Wallace, G.G., MacFarlane, D.R., and Baughman, R.H., Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochemistry Communications, 2004. 6(1): p. 22-27.
76. McFarlane, D., Sun, J., Golding, J., Meakin, P., amd Forsyth, M., High conductivity molten salts based on the imide ion. Electrochimica Acta, 2000. 45(8): p. 1271-1278.
77. Matsumoto, H., Yanagida, M., Tanimoto, K., Nomura, M., Kitagawa, Y., Miyazaki, Y., Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis (trifluoromethylsulfonyl) imide. Chemistry Letters, 2000. 29(8): p. 922.
78. Abbott, A.P., R.C. Harris, and K.S. Ryder, Application of hole theory to define ionic liquids by their transport properties. The Journal of Physical Chemistry B, 2007. 111(18): p. 4910-4913.
79. Smith, E.L., A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 2012. 114(21): p. 11060-11082.
80. Ru and B. Konig, Low melting mixtures in organic synthesis - an alternative to ionic liquids? Green Chemistry, 2012. 14(11): p. 2969-2982.
81. Boisset, A., J. Jacquemin, and M. Anouti, Physical properties of a new Deep Eutectic Solvent based on lithium bis [(trifluoromethyl) sulfonyl] imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors. Electrochimica Acta, 2013. 102: p. 120-126.
82. Cojocaru, A. and M. Sima, Electrochemical investigation of the deposition/dissolution of selenium in choline chloride with urea or ethylene glycol ionic liquids. Rev Chim, 2012. 63: p. 217-223.
83. Zhang, Q., De Oliveira Vigier, K., Royer, S., and Jerome, F., Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 2012. 41(21): p. 7108-7146.
84. Zuo, X., Li, Q., Liu, J., Xiao, X., Fan, C., and Nan, J., Preparation and performances of room molten salt as electrolyte in carbon-carbon capacitor based on LiPF6 and trifluoroacetamide. Acta Chimica Sinica, 2012. 70(04): p. 367-371.
85. Boisset, A., Menne, S., Jacquemin, J., Balducci, A., and Anouti, M., Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2013. 15(46): p. 20054-20063.
86. Zaidi, W., Timperman, L., and Anouti, M., Deep eutectic solvents based on N-methylacetamide and a lithium salt as electrolytes at elevated temperature for activated carbon-based supercapacitors. The Journal of Physical Chemistry C, 2014. 118(8): p. 4033-4042.
87. Baokou, X. and M. Anouti, Physical properties of a new deep eutectic solvent based on sulfonium ionic liquid as suitable electrolyte for electric double-layer capacitors. The Journal of Physical Chemistry C, 2014. 119: p. 970-979.
88. Kim, D.J., Ponraj, R., Kannan, A.G., Lee, H., Fathi, R., Ruffo, R., Mari, C.M., and Kim, D.K., Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. Journal of Power Sources, 2013. 244: p. 758-763.
89. Zhao, H., G.A. Baker, and S. Holmes, New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Organic & Bomolecular Chemistry, 2011. 9(6): p. 1908-1916.
90. 廖敏玲, 含有兩性離子官能基之表面自我聚集單分子層之研究(碩士論文). 成功大學化學工程學系學位元論文, 2002: p. 1-76.
91. Gagne, R.R., C.A. Koval, and G.C. Lisensky, Ferrocene as an internal standard for electrochemical measurements. Inorganic Chemistry, 1980. 19(9): p. 2854-2855.
92. Balducci, A., F. Soavi, and M. Mastragostino, The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Applied Physics A, 2006. 82(4): p. 627-632.
93. Deng, P., Liu, L., Ren, S., Li, H., and Zhang, Q., N-acylation: an effective method for reducing the LUMO energy levels of conjugated polymers containing five-membered lactam units. Chemical Communications, 2012. 48(55): p. 6960-6962.
94. 林佳緯, 含鋰室溫型離子液體之輸送特性及其微量添加對於鋰離子二次電池性質之影響(碩士論文). 2010, 國立雲林科技大學化學工程與材料工程系碩士班.
95. O’Mahony, A.M., Silvester, D., Aldous, L., Hardacre, C., and Compton, R.G., Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. Journal of Chemical & Engineering Data, 2008. 53(12): p. 2884-2891.
96. Johnson, D.A., Some thermodynamic aspects of inorganic chemistry. 1982: CUP Archive.
97. Olivier-Bourbigou, H. and L. Magna, Ionic liquids: perspectives for organic and catalytic reactions. Journal of Molecular Catalysis A: Chemical, 2002. 182: p. 419-437.
|