參考文獻 |
[1] R. V. Salvatierra, C. E. Cava, L. S. Roman, and A. J. G. Zarbin, "ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films," Advanced Functional Materials, vol. 23, pp. 1490-1499, 2013.
[2] H. W. Wu, C. H. Chu, Y. F. Chen, Y. W. Chen, W. H. Tsai, S. H. Huang, and G. S. Chen, "Study of AZO thin films under different ar flow and sputtering power by rf magnetron sputtering," Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 2, pp. 0958-0966, 2013.
[3] E. Arca, K. Fleischer, and I. V. Shvets, "An alternative fluorine precursor for the synthesis of SnO2:F by spray pyrolysis," Thin Solid Films, vol. 520, pp. 1856-1861, 2012.
[4] Y. Hu, Y. Zhang, C. Xu, G. Zhu, and Z. L. Wang, "High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display," Nano Letters, vol. 10, pp. 5025-5031, 2010.
[5] H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," Sensors and Actuators B: Chemical, vol. 192, pp. 607-627, 2014.
[6] D. Miao, S. Jiang, S. Shang, and Z. Chen, "Highly transparent and infrared reflective AZO/Ag/AZO multilayer film prepared on PET substrate by RF magnetron sputtering," Vacuum, vol. 106, pp. 1-4, 2014.
[7] R. Bhattacharjee and I. M. Hung, "Effect of different concentration Li-doping on the morphology, defect and photovoltaic performance of Li–ZnO nanofibers in the dye-sensitized solar cells," Materials Chemistry and Physics, vol. 143, pp. 693-701, 2014.
[8] J. J. Lee, J. Y. Ha, W. K. Choi, Y. S. Cho, and J. W. Choi, "Doped SnO2 transparent conductive multilayer thin films explored by continuous composition spread," ACS Combinatorial Science, vol. 17, pp. 247-52, 2015.
[9] P. M. Mwathe, R. Musembi, M. Munji, F. Nyongesa, B. Odari, W. Njoroge, B. Aduda, and B. Muthoka, "Effect of annealing and surface passivation on doped SnO2 thin films prepared by spray pyrolysis technique," Advances in Materials, vol. 4, pp. 51-58, 2015.
[10] R. L. Mishra, S. K. Mishra, and S. G. Prakash, "Optical and gas sensing characteristics of tin oxide nano-crystalline thin film," Journal of Ovonic Research, vol. 5, pp. 77-85, 2009.
[11] K. S. Kim, S. Y. Yoon, W. J. Lee, and K. H. Kim, "Surface morphologies and electrical properties of antimony-doped tin oxide films deposited by plasma-enhanced chemical vapor deposition," Surface and Coatings Technology, vol. 138, pp. 229-236, 2001.
[12] M. V. Castro, M. F. Cerqueira, L. Rebouta, P. Alpuim, C. B. Garcia, G. L. Júnior, and C. J. Tavares, "Influence of hydrogen plasma thermal treatment on the properties of ZnO:Al thin films prepared by dc magnetron sputtering," Vacuum, vol. 107, pp. 145-154, 2014.
[13] J. Wienke, B. van der Zanden, M. Tijssen, and M. Zeman, "Performance of spray-deposited ZnO:In layers as front electrodes in thin-film silicon solar cells," Solar Energy Materials and Solar Cells, vol. 92, pp. 884-890, 2008.
[14] X. Feng, J. Ma, F. Yang, F. Ji, F. Zong, C. Luan, and H. Ma, "Transparent conducting SnO2:Sb epitaxial films prepared on α-Al2O3 (0001) by MOCVD," Materials Letters, vol. 62, pp. 1779-1781, 2008.
[15] R. Swapna and M. C. S. Kumar, "Fabrication and characterization of n-ZnO:Eu/p-ZnO:(Ag, N) homojunction by spray pyrolysis," Materials Research Bulletin, vol. 49, pp. 44-49, 2014.
[16] D. R. Sahu, S.-Y. Lin, and J.-L. Huang, "Investigation of conductive and transparent Al-doped ZnO/Ag/Al-doped ZnO multilayer coatings by electron beam evaporation," Thin Solid Films, vol. 516, pp. 4728-4732, 2008.
[17] T. Tynell, R. Okazaki, I. Terasaki, H. Yamauchi, and M. Karppinen, "Electron doping of ALD-grown ZnO thin films through Al and P substitutions," Journal of Materials Science, vol. 48, pp. 2806-2811, 2012.
[18] G. Yang, B. Wang, W. Guo, Q. Wang, Y. Liu, C. Miao, and Z. Bu, "Hydrothermal growth of low-density ZnO microrod arrays on nonseeded FTO substrates," Materials Letters, vol. 90, pp. 34-36, 2013.
[19] E. Yablonovitch and G. D. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Transactions on Electron Devices, vol. 29, pp. 300-305, 1982.
[20] J. Hu and R. G. Gordon, "Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells," Solar Cells, vol. 30, pp. 437-450, 1991.
[21] T. Tohsophon, J. Hüpkes, H. Siekmann, B. Rech, M. Schultheis, and N. Sirikulrat, "High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells," Thin Solid Films, vol. 516, pp. 4628-4632, 2008.
[22] T. Oyama, M. Kambe, N. Taneda, and K. Masumo, "Requirements for TCO substrate in Si-based thin film solar cells -toward tandem," Materials Research Society Symposium Proceeding, vol. 1101, pp. 01-07, 2008.
[23] A. Hongsingthong, T. Krajangsang, I. A. Yunaz, S. Miyajima, and M. Konagai, "ZnO films with very high haze value for use as front transparent conductive oxide films in thin-film silicon solar cells," Applied Physics Express, vol. 3, p. 051102, 2010.
[24] A. Bessonov, Y. Cho, S. J. Jung, E. A. Park, E. S. Hwang, J. W. Lee, M. Shin, and S. Lee, "Nanoimprint patterning for tunable light trapping in large-area silicon solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. 2886-2892, 2011.
[25] W. L. Lu, K. C. Huang, P. K. Hung, and M. P. Houng, "Study of textured ZnO:Al thin film and its optical properties for thin film silicon solar cells," Journal of Physics and Chemistry of Solids, vol. 73, pp. 52-56, 2012.
[26] Y. Wang, X. Zhang, L. Bai, Q. Huang, C. Wei, and Y. Zhao, "Effective light trapping in thin film silicon solar cells from textured Al doped ZnO substrates with broad surface feature distributions," Applied Physics Letters, vol. 100, p. 263508, 2012.
[27] M. Meier, U. W. Paetzold, M. Ghosh, and R. van Erven, "Periodic nano-textures enhance efficiency in multi-junction silicon thin-film solar cells," Physica Status Solidi A, vol. 212, pp. 30-35, 2015.
[28] W. T. Yen, Y. C. Lin, and J. H. Ke, "Surface textured ZnO:Al thin films by pulsed DC magnetron sputtering for thin film solar cells applications," Applied Surface Science, vol. 257, pp. 960-968, 2010.
[29] D. Wan, F. Huang, Y. Wang, X. Mou, and F. Xu, "Highly surface-textured ZnO:Al films fabricated by controlling the nucleation and growth separately for solar cell applications," ACS Applied Materials & Interfaces, vol. 2, pp. 2147-2152, 2010.
[30] X. L. Chen, F. Wang, X. H. Geng, D. K. Zhang, C. C. Wei, X. D. Zhang, and Y. Zhao, "Natively textured surface Al-doped ZnO-TCO layers with gradual oxygen growth for thin film solar cells via magnetron sputtering," Applied Surface Science, vol. 258, pp. 4092-4096, 2012.
[31] F. Wang, X. L. Chen, X. H. Geng, D. K. Zhang, C. C. Wei, Q. Huang, X. D. Zhang, and Y. Zhao, "Development of natively textured surface hydrogenated Ga-doped ZnO-TCO thin films for solar cells via magnetron sputtering," Applied Surface Science, vol. 258, pp. 9005-9010, 2012.
[32] D. S. Bhachu, M. R. Waugh, K. Zeissler, W. R. Branford, and I. P. Parkin, "Textured fluorine-doped tin dioxide films formed by chemical vapour deposition," Chemistry, vol. 17, pp. 11613-21, 2011.
[33] C. Guillén, J. Montero, and J. Herrero, "Transparent and conductive electrodes combining AZO and ATO thin films for enhanced light scattering and electrical performance," Applied Surface Science, vol. 264, pp. 448-452, 2013.
[34] K. Byrappa and T. Adschiri, "Hydrothermal technology for nanotechnology," Progress in Crystal Growth and Characterization of Materials, vol. 53, pp. 117-166, 2007.
[35] M. Guo, P. Diao, and S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions," Journal of Solid State Chemistry, vol. 178, pp. 1864-1873, 2005.
[36] J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, and Y. Qian, "Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles," Journal of Physical Chemistry B, vol. 109, pp. 9463-9467, 2005.
[37] F. Lu, W. Cai, and Y. Zhang, "ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance," Advanced Functional Materials, vol. 18, pp. 1047-1056, 2008.
[38] K. C. Pradel, W. Wu, Y. Zhou, X. Wen, Y. Ding, and Z. L. Wang, "Piezotronic effect in solution-grown p-type ZnO nanowires and films," Nano Letters, vol. 13, pp. 2647-53, 2013.
[39] S. M. Hatch, J. Briscoe, A. Sapelkin, W. P. Gillin, J. B. Gilchrist, M. P. Ryan, S. Heutz, and S. Dunn, "Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance," Journal of Applied Physics, vol. 113, p. 204501, 2013.
[40] H. Zhang, J. Wu, C. Zhai, N. Du, X. Ma, and D. Yang, "From ZnO nanorods to 3D hollow microhemispheres: solvothermal synthesis, photoluminescence and gas sensor properties," Nanotechnology, vol. 18, p. 455604, 2007.
[41] Y. Z. Zheng, H. Ding, Y. Liu, X. Tao, G. Cao, and J. F. Chen, "In situ hydrothermal growth of hierarchical ZnO nanourchin for high-efficiency dye-sensitized solar cells," Journal of Power Sources, vol. 254, pp. 153-160, 2014.
[42] F. Z. Bedia, A. Bedia, and B. Benyoucef, "Electrical properties of ZnO/p-Si heterojunction for solar cell application," International Journal of Materials Engineering, vol. 3, pp. 59-65, 2013.
[43] J. W. Kang, Y. S. Choi, M. Choe, N. Y. Kim, T. Lee, B. J. Kim, C. W. Tu, and S. J. Park, "Electrical and structural properties of antimony-doped p-type ZnO nanorods with self-corrugated surfaces," Nanotechnology, vol. 23, p. 495712, 2012.
[44] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nature Materials, vol. 4, pp. 42-46, 2004.
[45] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, "ZnO Schottky ultraviolet photodetectors," Journal of Crystal Growth, vol. 225, pp. 110-113, 2001.
[46] J. I. Sohn, W. K. Hong, S. Lee, J. Y. Ku, Y. J. Park, J. Hong, S. Hwang, K. H. Park, J. H. Warner, S. Cha, and J. M. Kim, "Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity," Scientific Reports, vol. 4, pp. 1-7, 2014.
[47] L. N. Demianets, D. V. Kostomarov, I. P. Kuzmina, and S. V. Pushko, "Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions," Crystallography Reports, vol. 47, pp. S86-S98, 2002.
[48] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, "Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide assisted hydrothermal process," The Journal of Physical Chemistry B, vol. 108, pp. 3955-3958, 2004.
[49] C. Tang, M. J. S. Spencer, and A. S. Barnard, "Activity of ZnO polar surfaces an insight from surface energies," Physical Chemistry Chemical Physics, vol. 16, pp. 22139-22144, 2014.
[50] Y. He, T. Yanagida, K. Nagashima, F. Zhuge, G. Meng, B. Xu, A. Klamchuen, S. Rahong, M. Kanai, X. Li, M. Suzuki, S. Kai, and T. Kawai, "Crystal-Plane Dependence of Critical Concentration for Nucleation on Hydrothermal ZnO Nanowires," The Journal of Physical Chemistry C, vol. 117, pp. 1197-1203, 2013.
[51] C. B. Tay, S. J. Chua, and K. P. Loh, "Investigation of morphology and photoluminescence of hydrothermally grown ZnO nanorods on substrates pre-coated with ZnO nanoparticles," Journal of Crystal Growth, vol. 311, pp. 1278-1284, 2009.
[52] D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, "Lateral Epitaxial Overgrowth of ZnO in Water at 90 °C," Advanced Functional Materials, vol. 16, pp. 799-804, 2006.
[53] M. Valtiner, S. Borodin, and G. Grundmeier, "Stabilization and acidic dissolution mechanism of single crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imaging and ex-situ LEED," Langmuir, vol. 24, pp. 5350-5358, 2008.
[54] C. M. Shin, J. H. Heo, J. H. Park, T. M. Lee, H. Ryu, B. C. Shin, W. J. Lee, and H. K. Kim, "The effect of pH on ZnO hydrothermal growth on PES flexible substrates," Physica E: Low-dimensional Systems and Nanostructures, vol. 43, pp. 54-57, 2010.
[55] A. Goux, T. Pauporté, J. Chivot, and D. Lincot, "Temperature effects on ZnO electrodeposition," Electrochimica Acta, vol. 50, pp. 2239-2248, 2005.
[56] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, "Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method," Journal of Nanomaterials, vol. 2011, pp. 1-9, 2011.
[57] V. Strano, R. G. Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella, and S. Mirabella, "Double role of HMTA in ZnO nanorods grown by chemical bath deposition," The Journal of Physical Chemistry C, vol. 118, pp. 28189-28195, 2014.
[58] W. Guo, T. Liu, L. Huang, H. Zhang, Q. Zhou, and W. Zeng, "HMT assisted hydrothermal synthesis of various ZnO nanostructures: Structure, growth and gas sensor properties," Physica E: Low-dimensional Systems and Nanostructures, vol. 44, pp. 680-685, 2011.
[59] K. Govender, D. S. Boyle, P. B. Kenway, and P. O′Brien, "Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution," Journal of Materials Chemistry, vol. 14, p. 2575, 2004.
[60] A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine," Journal of Sol-Gel Science and Technology, vol. 39, pp. 49-56, 2006.
[61] M. L. Schmidt and D. J. L. MacManus, "ZnO – nanostructures, defects, and devices," Materials Today, vol. 10, pp. 40-48, 2007.
[62] S. Baruah and J. Dutta, "Hydrothermal growth of ZnO nanostructures," Science and Technology of Advanced Materials, vol. 10, p. 013001, 2009.
[63] J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, "Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis," Nat Mater, vol. 10, pp. 596-601, 2011.
[64] F. Oba, M. Choi, A. Togo, and I. Tanaka, "Point defects in ZnO: an approach from first principles," Science and Technology of Advanced Materials, vol. 12, p. 034302, 2011.
[65] B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied Physics Letters, vol. 79, p. 943, 2001.
[66] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, 2007.
[67] F. C. Chiu, "Conduction mechanisms in resistance switching memory devices using transparent boron doped zinc oxide films," Materials, vol. 7, pp. 7339-7348, 2014.
[68] I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, "Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes," Thin Solid Films, vol. 520, pp. 4432-4435, 2012.
[69] C. Yuen, S. F. Yu, S. P. Lau, Rusli, and T. P. Chen, "Fabrication of n-ZnO:Al∕p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique," Applied Physics Letters, vol. 86, p. 241111, 2005.
[70] J. H. Kim, B. D. Ahn, C. H. Lee, K. A. Jeon, H. S. Kang, and S. Y. Lee, "Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature," Journal of Applied Physics, vol. 100, p. 113515, 2006.
[71] T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, "Gallium concentration dependence of room-temperature near-bandedge luminescence in n-type ZnO:Ga," Applied Physics Letters, vol. 85, pp. 759-761, 2004.
[72] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. h. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim, "Structural and electrical properties of sputtered indium–zinc oxide thin films," Thin Solid Films, vol. 515, pp. 1364-1369, 2006.
[73] B. Wang, M. J. Callahan, C. Xu, L. O. Bouthillette, N. C. Giles, and D. F. Bliss, "Hydrothermal growth and characterization of indium-doped-conducting ZnO crystals," Journal of Crystal Growth, vol. 304, pp. 73-79, 2007.
[74] S. Fujihara, C. Sasaki, and T. Kimura, "Effects of Li and Mg doping on microstructure and properties of sol-gel ZnO thin films," Journal of the European Ceramic Society, vol. 21, pp. 2109-2112, 2001.
[75] J. J. Lai, Y. J. Lin, Y. H. Chen, H. C. Chang, C. J. Liu, Y. Y. Zou, Y. T. Shih, and M. C. Wang, "Effects of Na content on the luminescence behavior, conduction type, and crystal structure of Na-doped ZnO films," Journal of Applied Physics, vol. 110, p. 013704, 2011.
[76] G. Shanmuganathan, I. B. S. Banu, S. Krishnan, and B. Ranganathan, "Influence of K-doping on the optical properties of ZnO thin films grown by chemical bath deposition method," Journal of Alloys and Compounds, vol. 562, pp. 187-193, 2013.
[77] K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jiang, C. L. Perkins, J. Turner, and M. Al-Jassim, "Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation," Journal of Applied Physics, vol. 102, p. 023517, 2007.
[78] M. H. Hsu and C. J. Chang, "Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability," Journal of Hazard Mater, vol. 278, pp. 444-53, 2014.
[79] X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, and Y. Li, "Nitrogen doped ZnO nanowire arrays for photoelectrochemical water splitting," Nano Letters, vol. 9, pp. 2331-2336, 2009.
[80] Y. R. Ryu, T. S. Lee, J. H. Leem, and H. W. White, "Fabrication of homostructural ZnO p–n junctions and ohmic contacts to arsenic-doped p-type ZnO," Applied Physics Letters, vol. 83, p. 4032, 2003.
[81] C. L. Hsu, K. C. Chen, and T. J. Hsueh, "UV photodetector of a homojunction based on p-type Sb-doped ZnO nanoparticles and n-type ZnO nanowires," IEEE Transactions on Electron Devices, vol. 61, pp. 1347-1354, 2014.
[82] C. H. Park, S. B. Zhang, and S. H. Wei, "Origin of p-type doping difficulty in ZnO:The impurity perspective," Physical Review B, vol. 66, 2002.
[83] O. Volnianska, P. Boguslawski, J. Kaczkowski, P. Jakubas, A. Jezierski, and E. Kaminska, "Theory of doping properties of Ag acceptors in ZnO," Physical Review B, vol. 80, 2009.
[84] Q. Wan, Z. Xiong, J. Dai, J. Rao, and F. Jiang, "First-principles study of Ag-based p-type doping difficulty in ZnO," Optical Materials, vol. 30, pp. 817-821, 2008.
[85] U. Wahl, E. Rita, J. G. Correia, T. Agne, E. Alves, and J. C. Soares, "Lattice sites of implanted Cu and Ag in ZnO," Superlattices and Microstructures, vol. 39, pp. 229-237, 2006.
[86] S. J. Young, L. W. Ji, S. J. Chang, Y. P. Chen, and S. M. Peng, "ZnO Schottky diodes with iridium contact electrodes," Semiconductor Science and Technology, vol. 23, p. 085016, 2008.
[87] C. S. Lao, J. Liu, P. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, "ZnO nanobelt/nanowire schottky diodes formd by dielectrophoresis alignment across Au electrodes," Nano Letters, vol. 6, pp. 263-266, 2006.
[88] H. Kim, A. Sohn, and D.-W. Kim, "Silver Schottky contacts to Zn-polar and O-polar bulk ZnO grown by pressurized melt-growth method," Semiconductor Science and Technology, vol. 27, p. 035010, 2012.
[89] M. Shafiei, J. Yu, R. Arsat, K. Kalantar-zadeh, E. Comini, M. Ferroni, G. Sberveglieri, and W. Wlodarski, "Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensing," Sensors and Actuators B: Chemical, vol. 146, pp. 507-512, 2010.
[90] X. A. Zhang, F. Hai, T. Zhang, C. Jia, X. Sun, L. Ding, and W. Zhang, "Analysis of the electrical characteristics of the Ag/ZnO Schottky barrier diodes on F-doped SnO2 glass substrates by pulsed laser deposition," Microelectronic Engineering, vol. 93, pp. 5-9, 2012.
[91] H. Durmuş and U. l. Atav, "Extraction of voltage-dependent series resistance from I-V characteristics of Schottky diodes," Applied Physics Letters, vol. 99, p. 093505, 2011.
[92] S. K. Cheung and N. W. Cheung, "Extraction of Schottky diode parameters from forward current-voltage characteristics," Applied Physics Letters, vol. 49, p. 85, 1986.
[93] A. Tataroğlu and Ş. Altındal, "Analysis of interface states and series resistance of MIS Schottky diodes using the current–voltage (I–V) characteristics," Microelectronic Engineering, vol. 85, pp. 233-237, 2008.
[94] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, vol. 47, p. 4086, 1976.
[95] C. Hudaya, J. H. Park, and J. K. Lee, "Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films," Nanoscale Research Letters, vol. 7, p. 17, 2012.
[96] D. S. Ghosh, T. L. Chen, and V. Pruneri, "High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid," Applied Physics Letters, vol. 96, p. 041109, 2010.
[97] T. H. Kim, C. H. Kim, S. K. Kim, Y. S. Lee, and L. S. Park, "High quality transparent conductive ITO/Ag/ITO multilayer films deposited on glass substrate at room temperature," Molecular Crystals and Liquid Crystals, vol. 532, pp. 112-118, 2010.
[98] J. J. Richardson and F. F. Lange, "Controlling low temperature aqueous synthesis of ZnO thermodynamic analysis," Crystal Growth & Design, vol. 9, pp. 2570-2575, 2009.
[99] S. Peulon and D. Lincot, "Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions," Journal of Electrochemiacl Society, vol. 145, pp. 864-874, 1998.
[100] S. Yamabi and H. Imai, "Growth conditions for wurtzite zinc oxide films in aqueous solutions," Journal of Materials Chemistry, vol. 12, pp. 3773-3778, 2002.
[101] J. M. Jang, S. D. Kim, H. M. Choi, J. Y. Kim, and W. G. Jung, "Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process," Materials Chemistry and Physics, vol. 113, pp. 389-394, 2009.
[102] A. Degen and M. Kosec, "Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution," Journal of the European Ceramic Society, vol. 20, pp. 667-673, 2000.
[103] L. Han, N. Van Nong, W. Zhang, L. T. Hung, T. Holgate, K. Tashiro, M. Ohtaki, N. Pryds, and S. Linderoth, "Effects of morphology on the thermoelectric properties of Al-doped ZnO," RSC Advances, vol. 4, p. 12353, 2014.
[104] W. Li, E. Shi, W. Zhong, and Z. Yin, "Growth mechanism and growth habit of oxide crystals," Journal of Crystal Growth, vol. 203, pp. 186-196, 1999.
[105] M. N. R. Ashfold, R. P. Doherty, N. G. Ndifor-Angwafor, D. J. Riley, and Y. Sun, "The kinetics of the hydrothermal growth of ZnO nanostructures," Thin Solid Films, vol. 515, pp. 8679-8683, 2007.
[106] W. Li, C. Kong, G. Qin, H. Ruan, and L. Fang, "p-Type conductivity and stability of Ag–N codoped ZnO thin films," Journal of Alloys and Compounds, vol. 609, pp. 173-177, 2014.
[107] R. Chen, C. Zou, J. Bian, A. Sandhu, and W. Gao, "Microstructure and optical properties of Ag-doped ZnO nanostructures prepared by a wet oxidation doping process," Nanotechnology, vol. 22, p. 105706, 2011.
[108] K. Kim, P. C. Debnath, D. H. Lee, S. Kim, and S. Y. Lee, "Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires," Nanoscale Research Letters, vol. 6, p. 552, 2011.
[109] Ö. A. Yıldırım, H. E. Unalan, C. Durucan, and L. Klein, "Highly Efficient Room Temperature Synthesis of Silver-Doped Zinc Oxide (ZnO:Ag) Nanoparticles: Structural, Optical, and Photocatalytic Properties," Journal of the American Ceramic Society, vol. 96, pp. 766-773, 2013.
[110] S. Khosravi Gandomani, R. Yousefi, F. Jamali Sheini, and N. M. Huang, "Optical and electrical properties of p-type Ag-doped ZnO nanostructures," Ceramics International, vol. 40, pp. 7957-7963, 2014.
[111] L. Oleg, C. Lee, K. O. Luis, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, and A. Schulte, "Synthesis and characterization of Ag or Sb doped ZnO nanorods by facile hydrothermal route," The Journal of Physical Chemistry C, vol. 114, p. 12401, 2010.
[112] S. Ilican, "Effect of Na doping on the microstructures and optical properties of ZnO nanorods," Journal of Alloys and Compounds, vol. 553, pp. 225-232, 2013.
[113] B. Panigrahy, M. Aslam, D. S. Misra, M. Ghosh, and D. Bahadur, "Defect-related emissions and magnetization properties of ZnO nanorods," Advanced Functional Materials, vol. 20, pp. 1161-1165, 2010.
[114] A. B. Djurisic and Y. H. Leung, "Optical properties of ZnO nanostructures," Small, vol. 2, pp. 944-61, 2006.
[115] W. N. Wang, F. Wu, Y. Myung, D. M. Niedzwiedzki, H. S. Im, J. Park, P. Banerjee, and P. Biswas, "Surface engineered CuO nanowires with ZnO islands for CO2 photoreduction," ACS Appl Mater Interfaces, vol. 7, pp. 5685-5692, 2015.
[116] C. R. Catlow, A. A. Sokol, and A. Walsh, "Microscopic origins of electron and hole stability in ZnO," Chemical Communication, vol. 47, pp. 3386-3388, 2011.
[117] A. A. Sokol, S. A. French, S. T. Bromley, C. R. A. Catlow, H. J. J. van Dam, and P. Sherwood, "Point defects in ZnO," Faraday Discussions, vol. 134, pp. 267-282, 2007.
[118] B. Lin, Z. Fu, Y. Jia, and G. Liao, "Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions," Journal of The Electrochemical Society, vol. 148, p. G110, 2001.
[119] Y. Zhu, C. H. Sow, T. Yu, Q. Zhao, P. Li, Z. Shen, D. Yu, and J. T. L. Thong, "Co-synthesis of ZnO–CuO Nanostructures by Directly Heating Brass in Air," Advanced Functional Materials, vol. 16, pp. 2415-2422, 2006.
[120] S. Dhara and P. Giri, "Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires," Nanoscale Research Letters, vol. 6, p. 504, 2011.
[121] J. Tauc, R. Grigorovici, and A. Vancu, "Optical properties and electronic structure of amorphous germanium," Physica status solidi, vol. 15, pp. 627-637, 1966.
[122] D. R. Sahu, "Studies on the properties of sputter-deposited Ag-doped ZnO films," Microelectronics Journal, vol. 38, pp. 1252-1256, 2007.
[123] R. S. Zeferino, M. B. Flores, and U. Pal, "Photoluminescence and raman scattering in Ag-doped ZnO nanoparticles," Journal of Applied Physics, vol. 109, p. 014308, 2011.
[124] M. Karyaoui, A. Mhamdi, H. Kaouach, A. Labidi, A. Boukhachem, K. Boubaker, M. Amlouk, and R. Chtourou, "Some physical investigations on silver-doped ZnO sprayed thin films," Materials Science in Semiconductor Processing, vol. 30, pp. 255-262, 2015.
[125] L. Duan, W. Gao, R. Chen, and Z. Fu, "Influence of post-annealing conditions on properties of ZnO:Ag films," Solid State Communications, vol. 145, pp. 479-481, 2008.
[126] L. Tang, B. Wang, Y. Zhang, and Y. Gu, "Structural and electrical properties of Li-doped p-type ZnO thin films fabricated by RF magnetron sputtering," Materials Science and Engineering: B, vol. 176, pp. 548-551, 2011.
[127] C. L. Tsai, M. S. Wang, Y. H. Chen, H. C. Chang, C. J. Liu, C. T. Lee, Y. T. Shih, H. J. Huang, and Y. J. Lin, "Effects of Li content on the structural, optical, and electrical properties of LiZnMgO films," Journal of Applied Physics, vol. 107, p. 113717, 2010.
[128] C. B. Tay, J. Tang, X. S. Nguyen, X. H. Huang, J. W. Chai, V. T. Venkatesan, and S. J. Chua, "Low temperature aqueous solution route to reliable p-type doping in ZnO with K: growth chemistry, doping mechanism, and thermal stability," The Journal of Physical Chemistry C, vol. 116, pp. 24239-24247, 2012.
[129] S. S. H. Hosseini, S. R. Raza, H. S. Lee, and S. Im, "Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode," Physical Chemistry Chemical Physics, vol. 16, pp. 16367-16372, 2014.
[130] J. D. Hwang, C. Y. Kung, and Y. L. Lin, "Non-surface-treated Au/ZnO Schottky diodes using pre-annealed hydrothermal or sol-gel seed layer," IEEE Transcations on Nanotechnology, vol. 12, pp. 35-39, 2013.
[131] T. Krajewski, G. Luka, L. Wachnicki, M. I. Lukasiewicz, A. J. Zakrzewski, B. S. Witkowski, R. Jakiela, E. Lusakowska, K. Kopalko, B. J. Kowalski, M. Godlewski, and E. Guziewicz, "Schottky junctions with silver based on zinc oxide grown by atomic layer deposition," Physics and Chemistry of Solid State, vol. 12, pp. 224-229, 2011.
[132] T. Krajewski, G. Luka, P. S. Smertenko, A. J. Zakrzewski, K. Dybko, R. Jakiela, L. Wachnicki, S. Gieraltowska, B. S. Witkowski, M. Godlewski, and E. Guziewicz, "Schottky junction based on the ALD-ZnO thin films for electronic applications," ACTA Physica Polonica A, vol. 120, pp. 17-21, 2011.
|