博碩士論文 102324036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.135.185.194
姓名 林耀能(Yao-neng Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 磷酸根甲基化去氧核醣核酸:合成、定性及其應用之研究
(Phosphate-Methylated DNA as Neutralized DNA (nDNA):Synthesis, Properties and Potential Applications)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,由於生物技術的快速進展,人體中基因所表現、調控的功能,與其所提供人體當下的資訊也逐漸明朗。基因晶片是瞭解人體內的基因表現資訊很有用的工具,以非侵入性、大量、快速且低成本之檢測方式得到樣品中的DNA、RNA的表現資訊,可應用於早期的病症診斷,也可以針對治療效果進行監控及甚至提出進一步的治療方向。
  為了增加基因晶片的檢測能力,基因晶片上的核酸探針對於特定序列的目標核酸雜交辨識性、專一性、靈敏度是關鍵因素,而專一性的問題取決於使用的核酸探針與其目標物的雜交性質,以及周遭水溶液環境中鹽離子的影響,因此有許多研究團隊使用了多種核酸類似物作為探針進行測試,並針對其應用範圍進行探討。
  本研究主要開發一種核酸類似物,其磷酸骨幹的負電由甲基化所遮蔽,使核酸分子不帶電,與互補股序列的DNA雜交時會有更好的穩定性,並可以在低鹽濃度溶液環境下進行雜交,期待其對於序列的辨識性質更佳,且應用於電訊號敏感的感測平台上具有其優勢。
  因此研究中以固相化學法合成不帶電DNA並初步探討其應用於基因晶片之性質優勢。實驗中以質譜及NMR對特殊改質後的核苷單體原料定性、確認化學反應完成並探討合成條件,合成為oligo後以HPLC進行成分分析,純化後以質譜測量分子量確認合成成功,再以CD及電泳證明了其核酸雜交、辨識序列的能力,最終我們將不帶電DNA應用於FET生物感測器,並調整感測水溶液環境之條件,其實驗結果證明了中性DNA於基因檢測平台中的優越能力。
摘要(英) Intensive efforts have been achieved on the sequencing of whole human genome, which revealed the blueprint of what we are made of, but we do not yet know how it work without a guideline. DNA microarray is a useful tool for early diagnosis and prompt therapeutic intervention, however, low DNA probe recognition efficiency are usually affected by some specific sequences. To improve the sensitivity and specificity of DNA probe, we synthesized a novel neutral DNA (nDNA), which is a DNA analogue with the backbone phosphate groups changed by methylposphate groups. nDNA showed high affinity to hybridize with its complementary regular DNA and nDNA, even at low ionic strength buffer conditions. In particular, nDNA also improve the recognition efficiency for mismatch DNA sequences. In this study, we synthesized and characterized four nDNA nucleosides for nDNA synthesis. nDNAs were synthesized through the solid-phase synthesis and purified by reversed-phase chromatography. From the circular dichroism spectrum and gel electrophoresis we found that nDNA and its complementary DNA can form duplex, and this duplex shows higher Tm than regular DNA duplex. Finally, we took nDNA as probe on FET (field-effect transistor) sensor for gene detection, the results revealed that nDNA can enhance the recognition efficiency under low ionic strength condition.
關鍵字(中) ★ 去氧核醣核酸
★ 場效電晶體
關鍵字(英)
論文目次 目錄
摘要 iii
Abstract iv
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3
第二章 文獻回顧 4
2.1 生物標記Biomarker 4
2.2 基因晶片Gene chip 5
2.3 核酸類似物 5
2.3.1 肽核酸PNA 5
2.3.2 鎖核酸LNA 6
2.3.3 嗎啉基寡核苷酸MOs 7
2.3.4 中性DNA,n DNA 8
2.4 nDNA合成 10
第三章 實驗藥品、儀器設備與方法 13
3.1 實驗藥品 13
3.1.1 化學品 13
3.1.2 實驗耗材 16
3.2 儀器設備 16
3.3 實驗方法 17
3.3.1 核苷單體改質與管柱純化 17
3.3.2 nDNA原料準備、合成 19
3.3.3 nDNA保護基步驟 20
3.3.4 nDNA濃度定量 21
3.3.5 nDNA HPLC分析純化 23
3.3.6 nDNA Agarose電泳 24
3.3.7 nDNA PAGE電泳 25
3.3.8 nDNA圓偏光二色光譜儀測定構型 26
3.3.9 nDNA UV-vis分光光譜儀 27
第四章 結果與討論 29
4.1 nDNA nucleosides 保護基的選擇 29
4.2 原料單體amidite改質成果定性 33
4.2.1 以NMR針對化學結構鑑定 33
4.2.2 以質譜儀確認改質後分子量 34
4.2.3 產物之存放以及使用觀察 36
4.3 nDNA以HPLC進行成分分析 37
4.4 nDNA以質譜定性 43
4.5 nDNA去保護基條件 49
4.5.1 去保護基時間 49
4.5.2 不同酸鹼中和方式 51
4.6 nDNA 穩定性 52
4.7 nDNA電泳 57
4.7.1 Agarese電泳 58
4.7.2 PAGE電泳 61
4.8 nDNA 以圓二色光譜儀測定構型 63
4.9 nDNA應用於FET生物晶片初步成果 67
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 69
第六章 參考文獻 72
附錄Appendixes 75
參考文獻 1. Bast Jr, R., et al., CA 125: the past and the future. The International journal of biological markers, 1997. 13(4): p. 179-187.
2. Denison, C. and T. Kodadek, Small-molecule-based strategies for controlling gene expression. Chemistry & biology, 1998. 5(6): p. R129-R145.
3. Dervan, P.B., Molecular recognition of DNA by small molecules. Bioorganic & medicinal chemistry, 2001. 9(9): p. 2215-2235.
4. Demidov, V.V. and M.D. Frank-Kamenetskii, Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends in biochemical sciences, 2004. 29(2): p. 62-71.
5. Tomac, S., et al., Ionic effects on the stability and conformation of peptide nucleic acid complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
6. Koppelhus, U. and P.E. Nielsen, Cellular delivery of peptide nucleic acid (PNA). Advanced drug delivery reviews, 2003. 55(2): p. 267-280.
7. Egholm, M., et al., PNA hybridizes to complementary oligonucleotides obeying the Watson Crick hydrogen-bonding rules. 1993.
8. Zhang, G.-J., et al., Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosensors and Bioelectronics, 2009. 24(8): p. 2504-2508.
9. Hahm, J.-I. and C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano letters, 2004. 4(1): p. 51-54.
10. Cattani-Scholz, A., et al., Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection. ACS nano, 2008. 2(8): p. 1653-1660.
11. Zhang, G.-J., et al., Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors. Biosensors and Bioelectronics, 2008. 23(11): p. 1701-1707.
12. Li, Z., et al., Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation. Applied Physics A, 2005. 80(6): p. 1257-1263.
13. Gao, Z., et al., Silicon nanowire arrays for label-free detection of DNA. Analytical Chemistry, 2007. 79(9): p. 3291-3297.
14. Zhang, G.-J., et al., Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors and Actuators B: Chemical, 2010. 146(1): p. 138-144.
15. Cai, B., et al., Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS nano, 2014. 8(3): p. 2632-2638.
16. Obika, S., et al., Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C 3,-endo sugar puckering. Tetrahedron Letters, 1997. 38(50): p. 8735-8738.
17. Bondensgaard, K., et al., Structural studies of LNA: RNA duplexes by NMR: conformations and implications for RNase H activity. Chemistry-A European Journal, 2000. 6(15): p. 2687-2695.
18. Koshkin, A.A., et al., LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA: LNA duplexes. Journal of the American Chemical Society, 1998. 120(50): p. 13252-13253.
19. Summerton, J. and D. WELLER, Morpholino antisense oligomers: design, preparation, and properties. Antisense and Nucleic Acid Drug Development, 1997. 7(3): p. 187-195.
20. Summerton, J., Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1999. 1489(1): p. 141-158.
21. Zhang, G.-J., et al., Morpholino-functionalized silicon nanowire biosensor for sequence-specific label-free detection of DNA. Biosensors and Bioelectronics, 2010. 25(11): p. 2447-2453.
22. Koole, L.H., et al., Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group. The Journal of Organic Chemistry, 1989. 54(7): p. 1657-1664.
23. Kuijpers, W., et al., Synthesis of well-defined phosphate-methylated DNA fragments: the application of potassium carbonate in methanol as deprotecting reagent. Nucleic acids research, 1990. 18(17): p. 5197-5205.
24. van Genderen, M.H., L.H. Koole, and H.M. Buck, Hybridization of phosphate‐methylated DNA and natural oligonucleotides. Implications for protein‐induced DNA duplex destabilization. Recueil des Travaux Chimiques des Pays-Bas, 1989. 108(1): p. 28-35.
25. Coenen, A., et al., Optimization of the separation of the Rp and Sp diastereomers of phosphate-methylated DNA and RNA dinucleotides. Journal of Chromatography A, 1992. 596(1): p. 59-66.
26. Miller, P.S., et al., Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. Journal of the American Chemical Society, 1971. 93(24): p. 6657.
27. Miller, P.S., L.T. Braiterman, and P.O. Ts′o, Effects of a trinucleotide ethyl phosphotriester, Gmp (Et) Gmp (Et) U, on mammalian cells in culture. Biochemistry, 1977. 16(9): p. 1988-1996.
28. Koole, L.H. and H.M. Buck. Enhanced stability of a Watson & Crick DNA duplex structure by methylation of the phosphate groups in one strand. in Proc. K. Ned. Acad. Wet. 1987.
29. Buck, H.M., A conformational BZ DNA study monitored with phosphatemethylated DNA as a model for epigenetic dynamics focused on 5-(hydroxy) methylcytosine. 2013.
30. Mu, L., et al., Silicon Nanowire Field-Effect Transistors—A Versatile Class of Potentiometric Nanobiosensors. Access, IEEE, 2015. 3: p. 287-302.
31. Caruthers, M.H., Gene synthesis machines: DNA chemistry and its uses. Science, 1985. 230(4723): p. 281-285.
32. Brown, T. and T.B. Jr. Solid phase oligonucleotide synthesis. Available from: http://www.atdbio.com/content/17/Solid-phase-oligonucleotide-synthesis.
33. Chen, C.-H., et al., Convergent Solution Phase Synthesis of Chimeric Oligonucleotides by a 2+ 2 and 3+ 3 Phosphoramidite Strategy. Australian journal of chemistry, 2010. 63(2): p. 227-235.
34. Schmid, F.X., Biological Macromolecules: UV‐visible Spectrophotometry. eLS, 2001.
35. Dell, E.J. and F. Ganske. Old Assays, New Instrument: ELISA; NADH and NADPH Conversion; DNA and Protein Quantitation. Available from: http://www.bmglabtech.com/en/applications/application-notes/169-old-assays-new-instrument-elisa-nadh-and-nadph-conversion-dna-and-protein-quantitation-obj-94-829.html.
36. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2005. 1751(2): p. 119-139.
37. Gray, D.M., R.L. Ratliff, and M.R. Vaughan, Circular-Dichroism Spectroscopy of DNA. Methods in Enzymology, 1992. 211: p. 389-406.
38. Lin, K.C., et al., Characterization of the Interactions of Lysozyme with DNA by Surface Plasmon Resonance and Circular Dichroism Spectroscopy. Applied Biochemistry and Biotechnology, 2009. 158(3): p. 631-641.
39. Kypr, J., et al., Circular dichroism and conformational polymorphism of DNA. Nucleic acids research, 2009. 37(6): p. 1713-1725.
40. Genderen, v.M., Structure and stability of phosphate-methylated DNA duplexes: model systems for specific DNA-protein interaction and conformational transmission. 1989, Technische Universiteit Eindhoven.
指導教授 陳文逸 審核日期 2015-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明