參考文獻 |
1. Levi, E., Y. Gofer, and D. Aurbach, On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials. Chemistry of Materials, 2010. 22(3): p. 860-868.
2. Staiger, M.P., et al., Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006. 27(9): p. 1728-1734.
3. Gofer, Y., et al., SECONDARY BATTERIES | Magnesium Batteries (Secondary and Primary), Encyclopedia of Electrochemical Power Sources, 2009, p. 285-301.
4. Yoo, H.D., et al., Mg rechargeable batteries: an on-going challenge. Energy & Environmental Science, 2013. 6(8): p. 2265-2279.
5. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
6. Liang, Y., et al., Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode. Adv Mater, 2011. 23(5): p. 640-643.
7. Mohtadi, R. and F. Mizuno, Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J Nanotechnol, 2014. 5: p. 1291-1311.
8. Guo, Y., et al., Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy & Environmental Science, 2012. 5(10): p. 9100.
9. Malyi, O.I., et al., In search of high performance anode materials for Mg batteries: Computational studies of Mg in Ge, Si, and Sn. Journal of Power Sources, 2013. 233: p. 341-345.
10. Singh, N., et al., A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun, 2013. 49(2): p. 149-151.
11. Arthur, T.S., N. Singh, and M. Matsui, Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochemistry Communications, 2012. 16(1): p. 103-106.
12. Shao, Y., et al., Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett, 2014. 14(1): p. 255-260.
13. Kondo, S., et al., A new synthetic method for Chevrel-phase compounds. Solid State Ionics, 1992. 57(1–2): p. 147-151.
14. Lancry, E., et al., Molten salt synthesis (MSS) of Cu2Mo6S8—New way for large-scale production of Chevrel phases. Journal of Solid State Chemistry, 2006. 179(6): p. 1879-1882.
15. Lancry, E., et al., Leaching Chemistry and the Performance of the Mo6S8 Cathodes in Rechargeable Mg Batteries. Chemistry of Materials, 2004. 16(14): p. 2832-2838.
16. Aurbach, D., et al., Prototype systems for rechargeable magnesium batteries. Nature, 2000. 407(6805): p. 724-727.
17. Levi, E., et al., Phase Diagram of Mg Insertion into Chevrel Phases, MgxMo6T8 (T = S, Se). 2. The Crystal Structure of Triclinic MgMo6Se8. Chemistry of Materials, 2006. 18(16): p. 3705-3714.
18. Stephenson, T., et al., Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci., 2014. 7(1): p. 209-231.
19. Yang, S., et al., First-Principles Study of Zigzag MoS2 Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries. The Journal of Physical Chemistry C, 2012. 116(1): p. 1307-1312.
20. Liu, Y., et al., Sandwich-structured graphene-like MoS2/C microspheres for rechargeable Mg batteries. Journal of Materials Chemistry A, 2013. 1(19): p. 5822-5826.
21. Liu, Y., et al., Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale, 2013. 5(20): p. 9562-7.
22. Huie, M.M., et al., Cathode materials for magnesium and magnesium-ion based batteries. Coordination Chemistry Reviews, 2015. 287: p. 15-27.
23. Mizrahi, O., et al., Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries. Journal of The Electrochemical Society, 2008. 155(2): p. A103.
24. Pour, N., et al., Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations. J Am Chem Soc, 2011. 133(16): p. 6270-8.
25. Matsui, M., Study on electrochemically deposited Mg metal. Journal of Power Sources, 2011. 196(16): p. 7048-7055.
26. Cheng, Y., et al., High performance batteries based on hybrid magnesium and lithium chemistry. Chem Commun, 2014. 50(68): p. 9644-9646.
27. Gofer, Y., et al., Improved Electrolyte Solutions for Rechargeable Magnesium Batteries. Electrochemical and Solid-State Letters, 2006. 9(5): p. A257-A260.
28. Cho, J.H., et al., Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J Am Chem Soc, 2014. 136(46): p. 16116-16119.
29. Shao, Y., et al., Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Sci Rep, 2013. 3: p. 3130.
30. Yoo, H.D., et al., High areal capacity hybrid magnesium-lithium-ion battery with 99.9% coulombic efficiency for large-scale energy storage. ACS Appl Mater Interfaces, 2015. 7(12): p. 7001-7.
31. Gao, T., et al., Hybrid Mg2+/Li+ Battery with Long Cycle Life and High Rate Capability. Advanced Energy Materials, 2015. 5(5): 1401507 (1-5).
32. Su, S., et al., A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chem Commun, 2015. 51(13): p. 2641-2644.
33. Yagi, S., et al., A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A, 2014. 2(4): p. 1144-1149.
34. Kim, J.-K., Materials interfaces: Atomic-level structure and properties. Advanced Materials, 1993. 5(9): p. 685-686.
35. Choi, S.H., et al., Role of Cu in Mo6S8 and Cu Mixture Cathodes for Magnesium Ion Batteries. ACS Appl Mater Interfaces, 2015. 7(12): p. 7016-7024.
36. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
37. Nelson, E.G., et al., A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. J. Mater. Chem. A, 2014. 2(43): p. 18194-18198.
38. Wu, N., et al., Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angew Chem Int Ed Engl, 2015. 54(19): p. 5757-61.
39. Burstein, G.T., et al., Origins of pitting corrosion. Corrosion Engineering, Science and Technology, 2004. 39(1): p. 25-30.
40. Lv, D., et al., A Scientific Study of Current Collectors for Mg Batteries in Mg(AlCl2EtBu)2/THF Electrolyte. Journal of the Electrochemical Society, 2012. 160(2): p. A351-A355.
41. Levi, M.D., et al., Kinetic and Thermodynamic Studies of Mg2+ and Li+ Ion Insertion into the Mo6S8 Chevrel Phase. Journal of The Electrochemical Society, 2004. 151(7): p. A1044-A1051.
42. Gocke, E., et al., Molybdenum cluster chalcogenides Mo6X8: intercalation of lithium via electron/ion transfer. Inorganic Chemistry, 1987. 26(11): p. 1805-1812.
43. Py, M.A. and R.R. Haering, Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Canadian Journal of Physics, 1983. 61(1): p. 76-84.
44. Goodenough, J.B., Review Lecture: Fast Ionic Conduction in Solids. 1984. 393: 215-234.
45. Li, Y., et al., Enhanced Li Adsorption and Diffusion on MoS2 Zigzag Nanoribbons by Edge Effects: A Computational Study. The Journal of Physical Chemistry Letters, 2012. 3(16): p. 2221-2227.
46. Whittingham, M.S., The Role of Ternary Phases in Cathode Reactions. Journal of The Electrochemical Society, 1976. 123(3): p. 315-320.
47. Benavente, E., et al., Intercalation chemistry of molybdenum disulfide. Coordination Chemistry Reviews, 2002. 224(1–2): p. 87-109.
48. Du, G., et al., Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chemical Communications, 2010. 46(7): p. 1106-1108.
49. Xiao, J., et al., Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries. Chemistry of Materials, 2010. 22(16): p. 4522-4524.
|