參考文獻 |
1. E. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
2. H. Sankur, W. J. Gunning, and J. F. DeNatale, “Intrinsic stress and structural properties of mixed composition thin film,” Appl. Opt. 27, 1564-1567 (1988).
3. B. J. Pond, J. I. DeBar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt. 28, 2800-2805 (1989).
4. S. Chao, C. K. Chang, and J. S. Chen, “TiO2-SiO2 mixed films prepared by the fast alternating sputter method,” Appl. Opt. 30, 3233-3237 (1991).
5. J. S. Chen, S. Chao, J. S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 37, 90-96 (1996)..
6. T. U. Ryu, S. H. Hahn, S. W. Kim, and E. J. Kim, “Optical, mechanical and thermal properties of MgF2-ZnS and MgF2-Ta2O5 composite thin films deposited by co-evaporation,” Opt. Eng. 39, 3207-3213 (2000).
7. M. Veszelei, L. Kullman, C. G. Granqvist, N. von Rottkay, and M. Rubin, “Optical constants of sputter-deposited Ti-Ce oxide and Zr-Ce oxide films,” Appl. Opt. 37, 5993-6001 (1998).
8. X. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering,” Thin Solid Films 338, 105-109 (1999).
9. A. Ritz, “TaTiOx layers prepared by magnetron sputtering from separate metal targets,” Surf. Coat. Tech. 174-175, 651-654 (2003).
10. M. Cevro, “Ion-beam sputtering of (Ta2O5)x-(SiO2)1-x composite thin films,” Thin Solid Films 258, 91-103 (1995).
11. C. C. Lee, C. J. Tang, and J. Y. Wu, “Rugate filter made with composite thin films by ion-beam sputtering,” Appl. Opt. 45, 1333-1337 (2006)
12. C. C. Lee and C. J. Tang, “TiO2-Ta2O5 composite thin films deposited by Radio Frequency Ion-Beam Sputtering,” Appl. Opt. 45, 9125-9131 (2006)
13. S. Chao, W. H. Wang, M. Y. Hsu, and L. C. Wang, “Characteristics of ion-beam-sputtered high refractive-index TiO2-SiO2 mixed films,” J. Opt. Soc. Am. A 16, 1477-1483 (1996).
14. S. Chao, W. H. Wang, and C. C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2–SiO2 mixed films,” Appl. Opt. 40, 2177-2182 (2001).
15. W. H. Wang, and S. Chao, “Annealing effect on ion-beam-sputtered titanium dioxide film,” Opt. Lett. 23, 1417-1419 (1998).
16. J. C. Hsu, and C. C. Lee, “Single- and dual-ion-beam sputter deposition of titanium oxide films,” Appl. Opt. 37, 1171-1176 (1998).
17. C. C. Lee, H. C. Chen, and C. C. Jaing, “Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition”, Appl. Opt. 44, 2996-3009 (2005).
18. L. S. Hsu, R. Rujkorakarn, J. R. Sites, and C. Y. She, “Thermally induced crystallization of amorphous-titania films,” J. Appl. Phys. 59 (10), 3475-3480 (1986).
19. M. R. Kozlowski, “Damage-resistant laser coating,” in Thin films for Optical System, F. R. Flory, ed. (Marcel Dekker, New York, 1995), pp. 521-549.
20. W. H. Southwell, “Spectral response calculations of rugate filters using coupled-wave theory,” J. Opt. Soc. Am. A 5, 1558-1564 (1988).
21. W. H. Southwell, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949-2951 (1989).
22. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters”, Appl. Opt. 28, 5091-5094 (1989).
23. M. Zukic and K. H. Guenther, “Optical Coatings with Graded Index Layers for High Power Laser Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 895, 271-277 (1988).
24. R. Jacobsson, “Inhomogeneous and Co-evaporated Homogeneous Film for Optical Applications,” Physics of Thin Film, 8, 51-98(1975).
25. C. C. Lee, C. L. Tien, and J. C. Hsu “Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering,” Appl. Opt. 41, 2043-2047 (2002).
26. S. Shao, J. Shao, H. He, and Z. Fan, “Stress analysis of ZrO2/SiO2 multilayers deposited on different substrates with different thickness periods,” Opt. Lett. 30, 2119-2121 (2005)
27. N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053-3060 (2002).
28. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666-672 (1974).
29. R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500-503 (1984).
30. W. R. Grove, Phil. Trams. Roy. Soc. London, 142, 87 (1852).
31. G. K. Wehner, “Threshold Energies for Sputtering and the Sound Velocity in Metals,” Phys. Rev. 93, 633 (1954).
32. P. J. Martin, “Review Ion-based methods for optical thin film deposition,” J. Mater. Sci. 21, 1-25 (1986).
33. P. Sigmund, “Theory of Sputtering Yield of Amorphous and Polycrystalline Target,” Phys. Rev. 184, 383 (1969).
34. H. Fetz, Z. Phys. 119, 590 (1942).
35. J. E. Mahan, “Physical Vapor Deposition of Thin Films,” John Wiley & Sons, Inc. (2000), pp. 218.
36. 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, 第四版, pp.283 (1999).
37. J. R. Roth, “Industrial Plasma Engineering Volume 1: Principles,” Institute of Physics Publishing Bristol and Philadelphia, pp.102~106 (1995).
38. R. W. Hoffman, in physical of nonmetallic Thin films, edited by C.H.S. Dupuy and A. Cachard, Plenum Press: New York,pp.273 (1969).
39. E. Suhir and Y. C. Lee, in Hand book of Electronic Materials, Vol.1, ed. C. A. Dostal, ASM International, Metals Park,Ohio (1989).
40. J. D. Finegan and R.W. Hoffman, “Stress anisotropy in evaporated Iron Films,” J. Appl. Phys. 30, 597-598 (1959).
41. H. S. Story, R.W. Hoffman, J. Appl. Phys. 27, 193 (1956).
42. R. W. Hoffman, F.J. Anders, J. Appl. Phys. 23, 231 (1953).
43. B. A. Movchan, A. V. Demchishin, “Study of the structures and properties of thick vacuum condenstates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide”, Phys. Met. Metallorg. 28, 83(1969).
44. H. K. Pulker. “Mechanical properties of optical films,” Thin solid film 89, 191 (1982).
45. R. C. Sun, T. C. Tisone, P. D. Cruzan, ”The origin of internal stress in low-voltage sputtered tungsten films,” J. Appl. Phy. 46, No1 (1975).
46. W. D. Nix, “Mechanical Properties of thin films,” Metallurgical Trans. A20, 2217-2245 (1989).
47. J. A. Floro, E. Chason, S. R. Lee, “Real time measurement of epilayer strain using a simplified wafer curvature technique,” Mater. Res. Soc. Symp. Proc. 406, 491 (1996).
48. F. M. D’Hecurle, “Aluminum films deposited by rf sputtering,” Metallurgical Trans. I, 725-732 (1970).
49. K. H. Muller, “Model for ion assisted thin film densification.” J. Appl. Phys. 59, 2803 (1986).
50. K. H. Muller, “Ion-beam induced epitaxial vapour-phase growth: a molecular dynamics study,” Phys. Rev.B35, 7906 (1987).
51. K. H. Muller” Stress and microstructure of sputter deposited thin films: molecular dynamics investigations,” J. Appl. Phys. 62, 1796 (1987).
52. H. Windischmann, “An Intrinsic Stress Scaling Law for Polycrystalline Thin Film Prepared by Ion Beam Sputtering”, J. Appl. Phys. 62, 1800-1807 (1987).
53. C. A. Davis, “A simple model for the formation of compressive stress film by ion bombardment,” Thin solid films 226, 30 (1993).
54. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constant n, k and the thickness of the weakly absorbing thin film,” J. Phy. E: Sci. Inst. 9, 1002-1004 (1976).
55. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).
56. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamirin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson, I. Lindgren, and B. Lindgren, Atomic ,Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist &Wiksells, Stockholm, 1967.
57. C. J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press, New York, 1993.
58. J. Chastain and R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, Minn., 1995), pp. 44-45, pp. 72-73, and pp. 170–171.
59. D.R. Lide, CRC Handbook of Chemistry and Physics, 82. (CRC Press, London, 2001), pp. 9-75.
60. D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50 (8), 704-709 (1982).
61. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26-30 (1981). |