博碩士論文 101230008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:18.227.46.54
姓名 許家碩(Chia Shuo Hsu)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 麥角固醇對含膽固醇的脂雙層膜的影響
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effects of composition and thermal history on the properties of supported lipid bilayers
★ The effect of sterol on the POPE/DPPC membranes★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes
★ Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質
★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質
★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study★ The physical properties of phytosterol-containing lipid bilayers
★ An AFM Study on Supported Lipid Bilayers with and without Sterol★ β-谷固醇對POPE膜物理特性的影響
★ 固醇結構對PC膜物理特性的影響★ 人造細胞膜的相行為及脂質-固醇交互作用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 膽固醇(cholesterol)和麥角固醇(ergosterol)的結構相似,然而有些研究指出膽固醇和麥角固醇對脂雙層膜的影響不同。在有些細胞膜中發現同時含有膽固醇及麥角固醇,如釀酒酵母菌的粒腺體。因此我們想了解含有膽固醇與麥角固醇的脂雙層膜的特性為何。我們利用核磁共振(2H NMR)以及螢光顯微術來研究不飽和脂質、飽和脂質、膽固醇以及麥角固醇所組成人造膜的物理性質。核磁共振則藉由氘化不飽和脂質分子的sn-1碳氫鏈,得以測量脂質膜的相行為和脂質膜的有序程度。螢光顯微術藉由螢光分子(NBD-DOPE)標示液態無序相(liquid disorder, ld),以探討人造膜的表面形態。我們固定不飽和/飽和脂質的莫耳數比改變膽固醇/麥角固醇的莫耳數比作一系列的量測。我們也改變溫度進行一系列的量測。觀察到在相同溫度下,含膽固醇的脂雙層膜處於 lo 態,加入ergosterol會促進ld態的產生,增加ergosterol的含量,ld態含量增加,使得脂雙層膜有序程度減少。對於每種脂質膜,溫度升高,也會使脂雙層膜有序程度減少。
摘要(英) The structure of cholesterol and ergosterol are similar, whereas the effect of cholesterol and ergosterol on lipid bilayer is different. Some cell membranes contain both cholesterol and ergosterol, such as the mitochondria of Saccharomyces cerevisiae. How ergosterol affects the properties cholesterol-containing lipid bilayers is of interest. In this work, we have studied the physical properties of model membranes containing unsaturated lipid, saturated lipid, cholesterol, and ergosterol using deuterium nuclear magnetic resonance (2H-NMR) and fluorescence microscopy.In the NMR experiment, unsaturated lipids were deuterium labeled. The phase behavior and membrane order then can be observed.The morphology of model membranes was observed by fluorescence microscopy. The fluorescent probe NBD-DOPE, presumably participate into the disordered phases, is used.The measurements were performed as a function of cholesterol/ergosterol molar ratio by fixing the molar ratio of unsaturated to saturated lipids.The measurements were also performed as a function of temperature. Addition of ergosterol to the cholesterol-containing lipid bilayers, which is in the lo phase for a given temperature,produces the ld phase. The fraction of the ld phase increases as the ergosterol increases, resulting in the decrease of membrane order. Furthermore, it is observed that for each membrane composition, the membrane order decreases with increasing temperature.
關鍵字(中) ★ 麥角固醇
★ 膽固醇
★ 核磁共振儀
★ 人造細胞膜
關鍵字(英) ★ NMR
★ POPC
★ DPPC
★ ergosterol
★ cholesterol
論文目次 提要 I
Abstract II
致謝 III
目錄 IV
圖目 VI
表目 IX
第一章 緒論 1
1.1 細胞膜結構 1
1.2 脂質分子 2
1.3 膜的相行為 4
1.4 脂質筏(Lipid rafts) 5
1.5 POPC/DPPC/ergosterol 及 POPC/DPPC/cholesterol 的相關研究 6
1.6 POPC/DPPC/ergosterol/cholesterol 人造細胞膜 7
第二章 實驗方法與材料 9
2.1 螢光顯微鏡 9
2.1.1 螢光發光原理 9
2.1.2 螢光探劑(Fluorescence probe) 10
2.1.3 螢光顯微術原理 11
2.1.4 GUV製備 14
2.1.5 lo 態面積比率分析 17
2.2 Deuterium Nuclear Magnetic Resonance(2H NMR) 19
2.2.1 2H NMR 原理 19
2.2.2 電四極交互作用 21
2.2.3 粉狀光譜(Powder Spectrum) 22
2.2.4 特徵光譜 24
2.2.5 First Moment(M1) 25
2.2.6 MLV製備 26
第三章 實驗結果與討論 28
3.1 螢光實驗與2H NMR 量測上之相變溫度差異 28
3.2 (1:1POPC-d31/DPPC)+33mol%(chol/erg)脂質膜之
2H NMR實驗 29
3.3 脂質膜的形態隨著 ergosterol 濃度的變化 33
3.3.1 明視野與螢光影像 33
3.3.2 (1:1 POPC/DPPC)+33 mol%(chol/erg)脂質膜的
形態 35
第四章 結論 47
參考文獻 49
參考文獻 [1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell. Fifth Edition (2008).
[2] S. J. Singer, Garth L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science, New Series, Vol. 175, No. 4023 (Feb. 18, 1972), pp. 720-731.
[3] Karnovsky, Morris J., et al. "LIPID DOMAINS IN MEMBRANES*." Annals ofthe New York Academy of Sciences 401.1 (1982): 61-74.
[4] K. Simons, and E. Ikonen. Functional rafts in cell membranes. Nature 387 (1997) 569-572.
[5] https://bioscholars1st.wikispaces.com/Cells
[6] http://galleryhip.com/phospholipid-structure-labeled.html
[7] http://www.intechopen.com/books/lipid-peroxidation/liposomes-as-a-tool-to-study-lipid-peroxidation
[8] Philip L. Yeagle. (2004) The structure of biological membranes, 2nd edition CRCPress LLC, Boca Raton, p. 58.
[9] J. Rubenstein, B.A. Smith, H.M. McConnell, Lateral diffusion in binary mixtures ofcholesterol and phosphatidylcholines, Proceedings of the National Academyof Sciences 76 (1979) 15.
[10] D.A. Brown, and E. London. Structure of detergent-resistant membrane domains:does phase separation occur in biological membranes? Biochemical And Biophysical Research Communications 240 (1997) 1–7.
[11] S. Mukherjee, and F.R. Maxfield. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1 (2000) 203-211.
[12] D. L. Nelson and M. M. Cox. Lehninger principles of biochemistry (4th edn). Worth Publisher, New York, 2005.
[13] Head, Brian P., Hemal H. Patel, and Paul A. Insel. "Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling." Biochimica et Biophysica Acta (BBA)-Biomembranes 1838.2 (2014): 532-545.
[14] D.A. Brown, E. London, Structure and function of sphingolipid-and cholesterol-rich membrane rafts, Journal of Biological Chemistry 275 (2000) 17221-17224.
[15] E. Endress, S. Bayerl, K. Prechtel, C. Maier, R. Merkel, T.M. Bayerl, The effectof cholesterol, lanosterol, and ergosterol on lecithin bilayer mechanical properties at molecular and microscopic dimensions: a solid-state NMR and micropipet study, Langmuir 18 (2002) 3293-3299.
[16] Y.W. Hsueh, K. Gilbert, C. Trandum, M. Zuckermann, J. Thewalt, The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study, Biophysical journal 88 (2005) 1799-1808.
[17] D.A. Mannock, R.N.A.H. Lewis, R.N. McElhaney, Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes, Biophysical journal 91 (2006) 3327-3340.
[18] M.E. Beattie, S.L. Veatch, B.L. Stottrup, S.L. Keller, Sterol structure determines miscibility versus melting transitions in lipid vesicles, Biophysical journal 89 (2005) 1760-1768.
[19] S. Veatch, S. Keller, Miscibility Phase Diagrams of Giant Vesicles ContainingSphingomyelin, Physical review letters 94 (2005) 148101.
[20]Angela C. Brown, Kevin B. Towles, and Steven P. Wrenn. Measuring Raft Sizeas a Function of Membrane Composition in PC-Based Systems:Part II-Ternary Systems. Langmuir 23 (2007) 11188-11196.
[21] Ru-ping Wu.Fluorescence study of lipid membranes containing sterol.
[22]Min-yan Guo.Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol : A Deuterium NMR Study.
[23] E Zinser, F Paltauf, and G Daum.Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol. 1993 May; 175(10): 2853–2858.
[24] A. M. Feigin. Selective modification of sterol composition of hepatomas: new opportunities for chemotherapy. Medical HypothesesVolume 52, Issue 5, May 1999, Pages 383–388.
[25] Ohvo-Rekilä, Henna, et al. "Cholesterol interactions with phospholipids in membranes." Progress in lipid research 41.1 (2002): 66-97.
[26] Holthuis, Joost CM, and Tim P. Levine. "Lipid traffic: floppy drives and a superhighway." Nature reviews molecular cell biology 6.3 (2005): 209-220.
[27] Veen, Markus, Ulf Stahl, and Christine Lang. "Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae." FEMS yeast research 4.1 (2003): 87-95.
[28] Iwaki, Tomoko, et al. "Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe." Microbiology 154.3 (2008): 830-841.
[29] R.F.M. de Almeida, L. Loura, M. Prieto, Membrane lipid domains and rafts:current applications of fluorescence lifetime spectroscopy and imaging,Chemistry and physics of lipids 157 (2009) 61-77.
[30] L. Loura, R.F.M. De Almeida, L.C. Silva, M. Prieto, FRET analysis of domainformation and properties in complex membrane systems, Biochimica et BiophysicaActa (BBA)-Biomembranes 1788 (2009) 209-224.
[31] Rodriguez N, Pincet F and Cribier S 2005 Giant vesicles formed by gentlehydration and electroformation: A comparison by fluorescence microscopy Colloids Surf. B 42 125-30
[32]C.P.Slichter. (1990) Principles of magnetic resonance, Third editon,Springer – Verlag, New York, p. 485.
[33]尚未公開論文
[34] S. L. Veatch, I. V. Polozov,y K. Gawrisch,y and S. L. Keller. Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys J. 2004 May;86(5):2910-22.
指導教授 薛雅薇 審核日期 2015-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明