博碩士論文 102223007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.139.78.149
姓名 顔嘉儀(Chia-I Yen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 類沸石咪唑骨架材料(ZIF-90)之官能基修飾與 包覆質體DNA的探討
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文包含兩部分,第一部分延續實驗室已畢業的吳哲瑋學長之研究成果,將含有醛官能基的有機金屬骨架材料─ZIF-90─利用後修飾的方式轉換為三種分別帶有羧酸、胺基、硫醇基的不同材料,分別命名為ZIF-90-C、ZIF-90-A、ZIF-90-T。在溫和的反應條件下,修飾後的材料仍保有結晶性和孔洞性質,其中有近80%之微孔體積顯著的保留在修飾後的ZIF-90-C和ZIF-90-A材料上。而ZIF-90-A在純水中因胺基的質子化,其界達電位值提升至30 mV,表示其在水相中的分散穩定度提高,能延緩沉降聚積的速度,加上所有材料修飾前後皆保有溫和的細胞毒性,因此經過轉換官能基後能提升材料在生物方面應用的潛力。
第二部分根據實驗室在2015年成功利用ZIF-90材料包覆蛋白質的經驗,將包覆對象延伸至大分子量的核酸。本部分實驗藉由在ZIF-90水相的合成環境中加入預先混合的乙烯基吡咯烷酮(Polyvinylpyrrolidone, PVP)與質體DNA,使質體在ZIF-90晶體形成時被包覆在材料內,且其結晶性與外觀形態並沒有受影響,並初步利用電泳的方式確認核酸存在材料當中,未來仍需要實驗證實質體的包覆率及核酸序列完整性。期盼得到的複合材料能保護核酸並利用表面易於修飾等特質,有助於做為基因傳輸載體的應用。
摘要(英) In the first part of this dissertation, the aldehyde groups of Zeolitic Imidazolate Framework-90 (ZIF-90) were converted into carboxyl, amino, and thiol groups, which were named ZIF-90-C, ZIF-90-A and ZIF-90-T respectively, confirmed by the spectrometric investigations. X-ray diffraction patterns and N2 adsorption isotherm showed that the crystallinity and porosity of the framework were not affected. Remarkably, the micropore volume in ZIF-90-C and ZIF-90-A were retained almost 80% due to the mild reaction condition and the optimal reactant equivalence. According to zeta-potential analysis, the positive charge on surface of ZIF-90-A was significantly enhanced, which implies dispersion stability in water and affinity to slightly negatively charged cell surface. In addition to the surface charge enhancement, the moderate in vitro cytotoxicity of the transformers, as reported by AlamarBlue assay on HEK293 cell line, revealed the functionalization opens a new way for ZIF-90 in bioapplications.
In the second part, on the basis of our previous publication regarding embedded enzyme in MOF crystals, the guest molecules in this study was changing from enzyme to DNA. By adding polyvinylpyrrolidone together with plasmid into the aqueous ZIF-90 synthesis condition, the plasmid could be surrounded by the ZIF-90 framework. The X-ray diffraction patterns and the Scanning Electron Microscope image indicated the crystallinity and the morphology of ZIF-90 were intact after imbedding plasmid. Additionally, agarose gel electrophoresis primarily confirmed the nucleic acid component in acid-digested DNA/ZIF-90 complex material. It is worth mentioning that loading efficiency of plasmid and integrity of the nucleotide sequence need to be further studied. The ease of functionalization for DNA/ZIF-90 complex material is expected to be a benefit to gene delivery.
關鍵字(中) ★ 機金屬骨架材料
★ 後修飾
★ ZIF-90
★ 乙烯基吡咯烷酮
關鍵字(英)
論文目次 中文摘要 I
Abstract II
致謝辭 IV
目錄 V
圖目錄 VIII
表目錄 X
Part I 1
第1章 緒論 1
1.1 金屬有機骨架材料 1
1.1.1 發展 1
1.1.2 金屬有機骨架材料 2
1.1.3 類沸石咪唑骨架材料 4
1.1.4 類沸石咪唑骨架材料-90 6
1.2 研究動機與目的 7
第2章 實驗 9
2.1 官能基修飾 9
2.1.1 前修飾(Pre-install functional group) 10
2.1.2 後修飾(Post-synthetic functionalization) 12
2.2 實驗藥品及設備 14
2.3 類沸石咪唑骨架材料-90的合成 16
2.4 類沸石咪唑骨架材料後修飾 16
2.4.1 羧酸/胺基/硫醇官能基化方案 16
2.4.2 反應條件探討 17
2.4.3 官能基化實驗步驟 21
2.5 材料鑑定儀器之原理與方法 23
2.5.1 X射線粉末繞射儀 23
2.5.2 場發掃描式電子顯微鏡 26
2.5.3 傅立葉轉換紅外線吸收光譜儀 28
2.5.4 固態核磁共振儀 29
2.5.5 等溫吸/脫附儀 32
2.5.6 熱重分析儀 36
2.5.7 表面電位儀 38
2.6 細胞毒性測試- AlamarBlue assay 40
2.6.1 原理 40
2.6.1 nano-ZIF-90系列的合成步驟 40
2.6.2 AlamarBlue assay步驟 41
第3章 結果與討論 43
3.1 類沸石咪唑骨架材料結構之鑑定 43
3.1.1 X射線粉末繞射鑑定結果 43
3.1.2 場發掃描式電子顯微鏡鑑定結果 45
3.1.3 等溫氮氣吸/脫附儀 45
3.1.4 熱重分析儀 47
3.2 後修飾官能基化之鑑定 48
3.2.1 傅立葉轉換紅外線光譜之鑑定 49
3.2.2 固態核磁共振之鑑定 51
3.2.3 能量色散X射線分析 53
3.3 應用 53
3.3.1 表面電位之鑑定 53
3.3.2 半效應濃度之結果 54
第4章 結論 58
Part II 59
第5章 緒論 59
5.1 基因傳輸(Gene delivery) 59
5.2 質體(Plasmid) 59
5.3 膠囊封裝(Encapsulation) 60
5.4 動機 61
第6章 實驗 63
6.1 實驗儀器與藥品 63
6.2 質體萃取 64
6.3 包覆質體的類沸石咪唑骨架材料-90合成(控制組) 66
6.4 吸附質體的類沸石咪唑骨架材料-90合成(對照組) 67
6.5 質體包覆之鑑定─核酸電泳 67
第7章 結果與討論 73
7.1 類沸石咪唑骨架材料結構之鑑定 73
7.1.1 X射線粉末繞射鑑定結果 73
7.1.2 場發掃描式電子顯微鏡鑑定結果 73
7.2 質體包覆之鑑定─凝膠電泳 74
第8章 未來展望 77
第9章 附錄 79
9.1 等溫二氧化碳吸/脫附之結果 79
參考文獻 80
參考文獻 1. Tomic, E. A., Thermal stability of coordination polymers. J. Appl. Polym. Sci. 1965, 9 (11), 3745-3752.
2. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 1990, 112 (4), 1546-1554.
3. Gliemann, H.; Wöll, C., Epitaxially grown metal-organic frameworks. Mater. Today 2012, 15 (3), 110-116.
4. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378 (6558), 703-706.
5. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
6. The Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk/SUPPORTANDRESOURCES/Support/Pages/SupportSolution.aspx?supportsolutionid=275.
7. Batten Stuart, R.; Champness Neil, R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). In Pure Appl. Chem., 2013; Vol. 85, p 1715.
8. Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T., Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 2012, 134 (36), 15016-15021.
9. MOF the chart: why a record-breaking surface area matters. http://theconversation.com/mof-the-chart-why-a-record-breaking-surface-area-matters-9915.
10. Shieh, F.-K.; Hsiao, C.-T.; Wu, J.-W.; Sue, Y.-C.; Bao, Y.-L.; Liu, Y.-H.; Wan, L.; Hsu, M.-H.; Deka, J. R.; Kao, H.-M., A bioconjugated design for amino acid-modified mesoporous silicas as effective adsorbents for toxic chemicals. J. Hazard. Mater. 2013, 260 (0), 1083-1091.
11. Degnan, T., Jr., Applications of zeolites in petroleum refining. Top. Catal. 2000, 13 (4), 349-356.
12. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38 (5), 1477-1504.
13. Murray, L. J.; Dinca, M.; Long, J. R., Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38 (5), 1294-1314.
14. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38 (5), 1450-1459.
15. Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W., Light Harvesting in Microscale Metal–Organic Frameworks by Energy Migration and Interfacial Electron Transfer Quenching. J. Am. Chem. Soc. 2011, 133 (33), 12940-12943.
16. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112 (2), 1105-1125.
17. Wang, C.; Zhang, T.; Lin, W., Rational Synthesis of Noncentrosymmetric Metal–Organic Frameworks for Second-Order Nonlinear Optics. Chem. Rev. 2012, 112 (2), 1084-1104.
18. Shimizu, G. K. H.; Taylor, J. M.; Kim, S., Proton Conduction with Metal-Organic Frameworks. Science 2013, 341 (6144), 354-355.
19. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem. Int. Ed. 2006, 45 (10), 1557-1559.
20. Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O′Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (27), 10186-10191.
21. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.
22. Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R., Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 724-781.
23. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2009, 43 (1), 58-67.
24. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. J. Am. Chem. Soc. 2012, 134 (35), 14345-14348.
25. Li, P.-Z.; Aranishi, K.; Xu, Q., ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chem. Commun. 2012, 48 (26), 3173-3175.
26. Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8 (3), 2812-2819.
27. Pan, Y.; Lai, Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun. 2011, 47 (37), 10275-10277.
28. Song, Q.; Nataraj, S. K.; Roussenova, M. V.; Tan, J. C.; Hughes, D. J.; Li, W.; Bourgoin, P.; Alam, M. A.; Cheetham, A. K.; Al-Muhtaseb, S. A.; Sivaniah, E., Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 2012, 5 (8), 8359-8369.
29. Wu, H.; Zhou, W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. J. Am. Chem. Soc. 2007, 129 (17), 5314-5315.
30. Han, S. S.; Choi, S.-H.; Goddard, W. A., Improved H2 Storage in Zeolitic Imidazolate Frameworks Using Li+, Na+, and K+ Dopants, with an Emphasis on Delivery H2 Uptake. The Journal of Physical Chemistry C 2011, 115 (8), 3507-3512.
31. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2008, 130 (38), 12626-12627.
32. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. In Pure Appl. Chem., 1972; Vol. 31, p 577.
33. Thompson, J. A.; Blad, C. R.; Brunelli, N. A.; Lydon, M. E.; Lively, R. P.; Jones, C. W.; Nair, S., Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis. Chem. Mater. 2012, 24 (10), 1930-1936.
34. Lo, W.-S.; Liu, S.-M.; Wang, S.-C.; Lin, H.-P.; Ma, N.; Huang, H.-Y.; Shieh, F.-K., A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Adv 2014, 4 (95), 52883-52886.
35. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chem. Eur. J. 2013, 19 (34), 11139-11142.
36. Yang, T.; Chung, T.-S., Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation. Journal of Materials Chemistry A 2013, 1 (19), 6081-6090.
37. Huang, A.; Wang, N.; Kong, C.; Caro, J., Organosilica-Functionalized Zeolitic Imidazolate Framework ZIF-90 Membrane with High Gas-Separation Performance. Angew. Chem. Int. Ed. 2012, 51 (42), 10551-10555.
38. Huang, A.; Dou, W.; Caro, J. r., Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization. J. Am. Chem. Soc. 2010, 132 (44), 15562-15564.
39. Bae, T.-H.; Lee, J. S.; Qiu, W.; Koros, W. J.; Jones, C. W.; Nair, S., A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal–Organic Framework Crystals. Angew. Chem. Int. Ed. 2010, 49 (51), 9863-9866.
40. Li, H.; Feng, X.; Guo, Y.; Chen, D.; Li, R.; Ren, X.; Jiang, X.; Dong, Y.; Wang, B., A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition. Sci. Rep. 2014, 4.
41. Thompson, J. A.; Brunelli, N. A.; Lively, R. P.; Johnson, J. R.; Jones, C. W.; Nair, S., Tunable CO2 Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks. J. Phys. Chem. C 2013, 117 (16), 8198-8207.
42. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O′Keeffe, M.; Yaghi, O. M., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295 (5554), 469-472.
43. Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M., Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327 (5967), 846-850.
44. Cohen, S. M., Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chem. Rev. 2012, 112 (2), 970-1000.
45. Tanabe, K. K.; Wang, Z.; Cohen, S. M., Systematic Functionalization of a Metal−Organic Framework via a Postsynthetic Modification Approach. J. Am. Chem. Soc. 2008, 130 (26), 8508-8517.
46. 林麗娟, X 光繞射原理及其應用. 工業材料 1994, 86, 100-109.
47. X-ray Diffraction.
https://universe-review.ca/F13-atom04.htm.
48. Wide Angle X-ray Diffraction Studies of Liquid Crystals. http://cnx.org/contents/517f8f37-f619-4408-a8b4-2ef8a53e8c29@2/Wide_Angle_X-ray_Diffraction_S.
49. Scanning Electron Microscope.
https://www.purdue.edu/ehps/rem/rs/sem.htm..
50. Chemistry Stack Exchange. http://chemistry.stackexchange.com/questions/14738/difference-between-torsion-out-of-plane-coplanar-and-perpendicular-bends.
51. Andrew, E. R.; Bradbury, A.; Eades, R. G., Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed. Nature 1958, 182 (4650), 1659-1659.
52. 高憲明, 多核固態核磁共振於孔洞材料結構鑑定之應用. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 2004, 62 (2), 285-298.
53. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57 (4), 603-619.
54. BET analysis.
http://www.nanodic.com/nanocharacterization/BET_analysis.htm.
55. Gravimetric Methods of Analysis. http://chemwiki.ucdavis.edu/Wikitexts/UC_Davis/UCD_Chem_115/3._Gravimetric_Methods_of_Analysis.
56. Skoog, D. A.; West, D. M., Principles of instrumental analysis. Saunders College Philadelphia: 1980; Vol. 158.
57. Verwey, E. J. W., Theory of the Stability of Lyophobic Colloids. The Journal of Physical and Colloid Chemistry 1947, 51 (3), 631-636.
58. 陳冠任, 高速篩選系統的建立與新藥物開發. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI) 2008, 66 (4), 269-277.
59. Davis, M. E.; Chen, Z.; Shin, D. M., Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008, 7 (9), 771-782.
60. Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. W., Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Lett. 2006, 6 (4), 662-668.
61. Venna, S. R.; Jasinski, J. B.; Carreon, M. A., Structural Evolution of Zeolitic Imidazolate Framework-8. J. Am. Chem. Soc. 2010, 132 (51), 18030-18033.
62. Yee, K.-K.; Reimer, N.; Liu, J.; Cheng, S.-Y.; Yiu, S.-M.; Weber, J.; Stock, N.; Xu, Z., Effective Mercury Sorption by Thiol-Laced Metal–Organic Frameworks: in Strong Acid and the Vapor Phase. J. Am. Chem. Soc. 2013, 135 (21), 7795-7798.
63. Schejn, A.; Balan, L.; Falk, V.; Aranda, L.; Medjahdi, G.; Schneider, R., Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm 2014, 16 (21), 4493-4500.
64. Huo, J.; Marcello, M.; Garai, A.; Bradshaw, D., MOF-polymer composite microcapsules derived from Pickering emulsions. Adv Mater 2013, 25 (19), 2717-22.
65. Lampam GM, P. D., Kriz GS,Vyvyan JR, Spectroscopy. Fourth ed.; Brooks/Cole, Cengage Learning Canada, 2010.
66. Jose, T.; Hwang, Y.; Kim, D.-W.; Kim, M.-I.; Park, D.-W., Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether. Catal. Today 2015, 245 (0), 61-67.
67. Hall, C. M.; Wemple, J., A carbon-13 nuclear magnetic resonance study of thiol esters. The Journal of Organic Chemistry 1977, 42 (12), 2118-2123.
68. Shang L Fau - Nienhaus, K.; Nienhaus K Fau - Nienhaus, G. U.; Nienhaus, G. U., Engineered nanoparticles interacting with cells: size matters. (1477-3155 (Electronic)).
69. Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W., Size-Dependent Cytotoxicity of Gold Nanoparticles. Small 2007, 3 (11), 1941-1949.
70. He, Q.; Zhang, Z.; Gao, Y.; Shi, J.; Li, Y., Intracellular Localization and Cytotoxicity of Spherical Mesoporous Silica Nano- and Microparticles. Small 2009, 5 (23), 2722-2729.
71. Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M. J.; Horcajada, P., Cytotoxicity of nanoscaled metal-organic frameworks. J. Mater. Chem. B 2014, 2 (3), 262-271.
72. Anderson, W. F.; Blaese, R. M.; Culver, K., The ADA human gene therapy clinical protocol: Points to Consider response with clinical protocol, July 6, 1990. Hum Gene Ther 1990, 1 (3), 331-62.
73. Juan-Alcaniz, J.; Gascon, J.; Kapteijn, F., Metal-organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. J. Mater. Chem. 2012, 22 (20), 10102-10118.
74. Li, B.; Zhang, Y.; Ma, D.; Ma, T.; Shi, Z.; Ma, S., Metal-Cation-Directed de Novo Assembly of a Functionalized Guest Molecule in the Nanospace of a Metal–Organic Framework. J. Am. Chem. Soc. 2014, 136 (4), 1202-1205.
75. Hu, P.; Zhuang, J.; Chou, L.-Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y.-C.; Tsung, C.-K., Surfactant-Directed Atomic to Mesoscale Alignment: Metal Nanocrystals Encased Individually in Single-Crystalline Porous Nanostructures. J. Am. Chem. Soc. 2014, 136 (30), 10561-10564.
76. Jia, Y.; Wei, B.; Duan, R.; Zhang, Y.; Wang, B.; Hakeem, A.; Liu, N.; Ou, X.; Xu, S.; Chen, Z.; Lou, X.; Xia, F., Imparting biomolecules to a metal-organic framework material by controlled DNA tetrahedron encapsulation. Sci. Rep. 2014, 4.
77. Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A., Nucleic Acid–Metal Organic Framework (MOF) Nanoparticle Conjugates. J. Am. Chem. Soc. 2014, 136 (20), 7261-7264.
78. Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E., Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001, 70 (1-2), 1-20.
79. Shieh, F. K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C.; Tsung, C. K., Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc 2015, 137 (13), 4276-9.
80. Birnboim, H. C.; Doly, J., A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979, 7 (6), 1513-1523.

指導教授 謝發坤 審核日期 2015-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明