參考文獻 |
1. Palladino MA, B.F., Theodorakis EA, Moldawer LL, Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov, 2003. 2(9): p. 736-746.
2. Petros RA, D.J., Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010. 9: p. 615-627.
3. Ferber, D., GENE THERAPY:Safer and Virus-Free? Science 2001. 294: p. 1638-1642.
4. E. Tomlinson *, A.P.R., Controllable gene therapy Pharmaceutics of non-viral gene delivery systems Controlled Release, 1996. 39: p. 357-372.
5. Kilk K, E.-A.S., Järver P, Meikas A, Valkna A, Bartfai T, Kogerman P, Metsis M, Langel U., Evaluation of transportan 10 in PEI mediated plasmid delivery assay. J Control Release, 2005. 103: p. 511-523.
6. Mislick KA, B.J., Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc. Natl. Acad. Sci. USA, 1996. 93: p. 12349-12354.
7. Z.Y. Zhang, B.D.S., High-generation polycationic dendrimers are unusually effective at disrupting anionic vesicles: membrane bending model. Bioconjugate Chem, 2000. 11: p. 805-814.
8. Sergio H. Marshall, a.G.A., Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electronic Journal of Biotechnology, 2003. 6.
9. Tsai, B.-c., BIOACTIVITIES AND DIRECT TRANSMEMBRANE CHARACTERISTICS OF INDOLICIDIN AND ITS ANALOGUES. 2012.
10. Chiao-chun Yeh, W.-W.H., The use of short peptides conjugated PEI for gene delivery application. National Central University, 2013.
11. Abul K. Abbas MBBS , A.H.H.L.M.P., Shiv Pillai MBBS PhD Basic Immunology: Functions and Disorders of the Immune System, 4e Philadelphia, PA: Saunders Elsevier, 2012.
12. Bruce Alberts, A.J., Julian Lewis, Martin Raff, Keith Roberts, and Peter Walter, Molecular Biology of the Cell, 4th edition. New York : Garland Science, 2002.
13. Openshaw, R.J.B.a.P.J., Pulmonary defences to acute respiratory infection. British Medical Bulletin, 2002. 61: p. 1-12.
14. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature, 2007. 449: p. 819-826.
15. MS2, P.F., The innate and adaptive immune systems. University of California San Francisco.
16. Gabay, C.K., I, Mechanisms of disease: Acute-phase proteins and other systemic responses to inflammation. NEW ENGLAND JOURNAL OF MEDICINE, 1999. 340(6): p. 448-454.
17. Buchan G, B.K., Turner M, Chantry D, Maini RN, Feldmann M, Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1 alpha. Clin. Exp. Immunol, 1988. 73(3): p. 449-455.
18. Mease PJ, G.B., Metz J, VanderStoep A, Finck B, Burge DJ., Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet, 2000. 356: p. 385-390.
19. Feldmann M, M.R., Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol, 2001. 19: p. 163-196.
20. Health, D.o., Our inheritance, our future – realising the potential of genetics in the NHS. Genetics White Paper, 2003: p. chapter 1.25.
21. Verma, I.M., Gene Therapy: The Need for Basic Science. Molecular Therapy, 2000. 2: p. 531-531.
22. IM., V., Gene Therapy: The Need for Basic Science. Molecular Therapy, 2000. 2: p. 531-531.
23. 陳一村, 核糖核酸干擾術及其應用. biomedicine, 2008. 1(3).
24. Dong, L., et al., Targeting delivery oligonucleotide into macrophages by cationic polysaccharide from Bletilla striata successfully inhibited the expression of TNF-alpha. J Control Release, 2009. 134(3): p. 214-20.
25. Huang, Z., et al., Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release, 2012. 158(2): p. 286-92.
26. Kerstin B. Kaufmann, H.B.n., Anne Galy, Axel Schambach, Manuel Grez, Gene therapy on the move. EMBO Molecular Medicine, 2013. 5(1): p. 1642-1661.
27. Redberry, G., Gene silencing : new research. New York: Nova Science Publishers, 2006.
28. R. Kole, A.R.K., S. Altman, RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Rev. Drug Discov, 2012. 11: p. 125-140.
29. Crystal, R.G., Transfer of Genes to Humans: Early Lessons and Obstacles to Success. SCIENCE, 1995. 270: p. 404-410.
30. TONG-CHUAN HE*, S.Z., LUIS T. DA COSTA†, JIAN YU†, KENNETH W. KINZLER‡, AND BERT VOGELSTEIN*, A simplified system for generating recombinant adenoviruses. Medical Sciences, 1998. 95: p. 2509-2514.
31. Büning H1, P.L., Coutelle O, Quadt-Humme S, Hallek M., Recent developments in adeno-associated virus vector technology. J Gene Med, 2008. 7: p. 717-33.
32. Yla-Herttuala, S., Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther, 2012. 20(10): p. 1831-2.
33. Ledley, F.D., Nonviral gene therapy: the promise of genes as pharmaceutical products. Gene Ther, 1995. 6: p. 1129-1144.
34. C.P. Lollo, M.G.B., H.C. Chiou, Obstacles and tissue-specific promotors [107,108] should enable the advances in non-viral gene delivery, Curr. Opin. Mol. Ther., 2000. 2: p. 136-142.
35. NING-SUN YANG*, J.B., BETH ROBERTS, BRIAN MARTINELL, AND DENNIS MCCABE, In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Genetics, 1990. 87: p. 9568-9572.
36. Chang, D.C., Chassy, B.M., and Saunders J.A. , Guide to electroporation and electrofusion. New York: Academic Press, 1992.
37. George Poste, D.P., William J. Vail, Chapter 4 Lipid Vesicles as Carriers for Introducing Biologically Active Materials into Cells. Methods in Cell Biology, 1976. 14: p. 33-71.
38. Dimitraidis, G.J., Introduction of ribonucleic acids into cells by means of liposomes. Nucleic Acids Res, 1978. 5(4): p. 1381-1386.
39. Anil B. Mukherjee*, S.O., Jean DeB. Butler*, Timothy Triche†, Peter Lalley†‡, and Joseph D. Schulman*, Entrapment of metaphase chromosomes into phospholipid vesicles (lipochromosomes): Carrier potential in gene transfer. Nail. Acad. Sci. USA, 1978. 75: p. 1361-1365.
40. Fraley RT, F.C., Kaplan S., Entrapment of a bacterial plasmid in phospholipid vesicles: potential for gene transfer. 76, 1979. Proc Natl Acad Sci U S A. : p. 3348-3352.
41. J.H. Felgner, R.K., C.N. Sridhar, C.J. Wheeler, Y.J. Tsai, R. Border, P. Ramsey, M. Martin, P.L. Felgner, Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations, J. Biol. Chem., 1994. 269: p. 2550-2561.
42. Simanek, M.A.M.a.E.E., Nonviral Vectors for Gene Delivery. Chem. Rev., 2009. 109: p. 259-302.
43. Xu Y, S.F.J., Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry., 1996. 18: p. 5616-23.
44. Hellstrand E, N.A., Topgaard D, Linse S, Sparr E., Membrane lipid co-aggregation with α-synuclein fibrils. PLoS One, 2013. 8(10): p. e77235.
45. A. V. Ulasov, Y.V.K., G. A. Trusov,A. A. Rosenkranz, E. D. Sverdlov and A. S. Sobolev, Properties of PEI-based Polyplex Nanoparticles That Correlate With Their Transfection Efficacy. Molecular Therapy 2011. 19: p. 103-112.
46. F. Nederberg, Y.Z., J. P. K. Tan, K. Xu, H. Wang, C. Yang, S. Gao, X. D. Guo, K. Fukushima, L. Li, J. L. Hedrick and Y.-Y. Yang, Biodegradable nanostructures with selective lysis of microbial membranes. NATURE CHEMISTRY, 2011. 3: p. 409-414.
47. X. Lu, Y.P., F. J. Xu, Z. H. Li, Q. Q. Wang, J. H. Chen, W. T. Yang, and G. P. Tang, Bifunctional Conjugates Comprising β-Cyclodextrin, Polyethylenimine, and 5-Fluoro-2′-Deoxyuridine for Drug Delivery and Gene Transfer. Bioconjugate Chem, 2010. 21: p. 1855-1863.
48. K. A. Howard, S.R.P., M. A. Behlke, F. Besenbacher, B. Deleuran and J. Kjems, Chitosan/siRNA Nanoparticle–mediated TNF-α Knockdown in Peritoneal Macrophages for Anti-inflammatory Treatment in a Murine Arthritis Model. 2008. 17: p. 162-168.
49. Jihoon Kim, Y.L., Kaushik Singha, Hyun Woo Kim, Jae Ho Shin, Seongbong Jo, Dong-Keun Han, and Won Jong Kim, NONOates–Polyethylenimine Hydrogel for Controlled Nitric Oxide Release and Cell Proliferation Modulation. Bioconjugate Chem, 2011. 22: p. 1031–1038.
50. J. H. Kim, P.-H.C., I. Y. Kim, K. T. Lim, H. M. Son, Y.-H. Choung, C.-S. Cho and J. H, Electrospun nanofibers composed of poly(ε-caprolactone) and polyethylenimine for tissue engineering applications. Materials Science and Engineering: C, 2009. 29(5): p. 1725-1731.
51. Li J, G.B., Meng Q, Yan Z, Gao H, Chen X, Yang X, Lu W., The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology, 2011. 22(43): p. 435101-435108.
52. Samal, S.K., et al., Cationic polymers and their therapeutic potential. Chem Soc Rev, 2012. 41(21): p. 7147-94.
53. T. Bieber, W.M., S. Kostin, A. Niemann, H.P. Elsasser., Intracellular route and transcriptional competence of polyethylenimine-DNA complexes, . Controll. Rel., 2002. 82 p. 441-454.
54. B. Brissault, A.K., Ch. Guis, Ch. Leborgne, O. Danos, H. Cheradame, , Synthesis of Linear Polyethylenimine Derivatives for DNA Transfection. Bioconjugate Chem, 2003. 14: p. 581-587.
55. U. Lungwitz, M.B., T. Blunk, A. Go¨pferich, Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2005. 60: p. 247-266.
56. C.R. Dick, G.E.H., Characterization of polyethylenimine. Macromol. Sci. Chem, 1970. 4: p. 1301-1314.
57. Ira Yudovin-Farber, Jacob Golenser, Nurit Beyth, Ervin I. Weiss, and Abraham J. Domb, Quaternary Ammonium Polyethyleneimine: Antibacterial Activity. Journal of Nanomaterials, 2010. 2010.
58. W.T. Godbey, K.K.W., A.G. Mikos Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. Biomed. Mater. Res, 1999. 45: p. 268-275.
59. Compbell, N.a.R., JB, Membrane structure and function. Biology 2002. CH8: p. 138-154.
60. Stefan Schütze, V.T.W.S.-B., Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nature Reviews Molecular Cell Biology, 2008. 9: p. 655-662.
61. Andre E. Nel, L.M., Darrell Velegol, Tian Xia1, Eric M. V. Hoek, Ponisseril Somasundaran, Fred Klaessig, Vince Castranova & Mike Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 2009. 8: p. 543-557.
62. Heitz F1, M.M., Divita G., Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol., 2009. 157: p. 195-206.
63. Prochiantz, A., Protein and peptide transduction, twenty years later a happy birthday. Adv Drug Deliv Rev, 2008. 60(4-5): p. 448-51.
64. Frankel, A.D.P., C.O. , Cellular uptake of the Tat protein from human immunodeficiency virus. Cell, 1988. 55: p. 1189-1193.
65. Green, M.L., P.M., Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55: p. 1179-1188.
66. Helland DE1, W.J., Caputo A, Haseltine WA., Transcellular transactivation by the human immunodeficiency virus type 1 tat protein. J Virol, 1991. 65: p. 4547-4549.
67. Joliot, A.e.a., Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein. Curr. Biol., 1998. 8: p. 856–863
68. Prochiantz2, A.J.A., Transduction peptides: from technology to physiology. Nature Cell Biology, 2004. 6: p. 189 - 196
69. Lee, S.H., B. Castagner, and J.C. Leroux, Is there a future for cell-penetrating peptides in oligonucleotide delivery? Eur J Pharm Biopharm, 2013. 85(1): p. 5-11.
70. Chan, D.I., E.J. Prenner, and H.J. Vogel, Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta, 2006. 1758(9): p. 1184-202.
71. Selsted ME1, N.M., Morris WL, Tang YQ, Smith W, Cullor JS., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem., 1992. 267: p. 4292-5.
72. C. Subbalakshmi, V.K., R. Nagaraj, N. Sitaram, Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Letter, 1996. 395(1): p. 48-52.
73. Tsai, C.-W., Molecular Design of Less Hemolytic and Highly Antibacterial Indolicidin-Derived Peptides Assisted by Molecular Simulation and Fluorescence Analysis. 2010.
74. Brogden1, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 2005. 3: p. 238-250.
75. Salomone, F., et al., A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J Control Release, 2012. 163(3): p. 293-303.
76. Jehangir S Wadia1, Radu V Stan2 & Steven F Dowdy1,2, Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine 2004. 10: p. 310-315.
77. René Bartz , H.F., Jingtao Zhang , Nathalie Innocent , Craig Cherrin , Stephen C. Beck , Yi Pei , Aaron Momose , Vasant Jadhav , David M. Tellers , Fanyu Meng , Louis S. Crocker , Laura Sepp-Lorenzino , Stanley F. Barnett Effective siRNA delivery and target mRNA degradation using an amphipathic peptide to facilitate pH-dependent endosomal escape. Biochemical, 2011. 435: p. 475-487.
78. Fabrizio Salomonea, F.C., Mariagrazia Di Lucaa, Claudia Boccardib, Riccardo Nifosìa, Giuseppe Bardib, Lorenzo Di Baric, Michela Serresib, Fabio Beltrama, , A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. Journal of Controlled Release, 2012. 163(3): p. 293-303.
79. Ya-Jung Lee, A.E.-O.a.J.-P.P.P., Delivery of Macromolecules into Live Cells by Simple Co-incubation with a Peptide. ChemBioChem, 2010. 11(3): p. 325-330.
80. Likun Fei, L.R., Jennica L. Zaro, and Wei-Chiang Shen, The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. J. Drug Target., 2011. 19: p. 675-680.
81. M.M. Fabani, C.A.-G., D. Williams, P.A. Lyons, A.G. Torres, K.G.C. Smith, A.J. Enright, M.J. Gait, E. Vigorito,, Efficient inhibition of miR-155 function in vivo by peptide nucleic acids. Nucl. Acids Res., 2010. 38: p. 4466-4475.
82. S. Abes, J.J.T., G.D. Ivanova, D. Owen, D. Williams, A. Arzumanov, P. Clair, M.J. Gait, B. Lebleu,, Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide Nucl. Acids Res., 2007. 35(13): p. 4495-4502.
83. El-Andaloussi, S.J., P. Johansson, H.J. Langel, Ü. , Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. 2007. 407(2): p. 285-292.
84. S. Deshayes, K.K., A. Rydstrom, L. Crombez, C. Godefroy, P.E. Milhiet, A. Thomas, R. Brasseur, G. Aldrian, F. Heitz, M.A. Munoz-Morris, J.M. Devoisselle, G. Divita,, Self-Assembling Peptide-Based Nanoparticles for siRNA Delivery in Primary Cell Lines. Small, 2012. 8(14): p. 2184-2188.
85. J.-M. Crowet, L.L., S. Deshayes, G. Divita, M. Morris, R. Brasseur, A. Thomas,, Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo,. Biochim. Biophys., 2013. 1828: p. 499-509.
86. R.H. Mo, J.L.Z., W.-C. Shen, Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy,. Mol. Pharm., 2012. 9 p. 299-309.
87. C. Zhang, N.T., X. Liu, W. Liang, W. Xu, V.P. Torchilin., SiRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J.Control.Release, 2006. 112: p. 229-239.
88. T. Shiraishi, P.E.N., Enhanced delivery of cell-penetrating peptidepeptide nucleic acid conjugates by endosomal disruption. . Nat. Protoc. , 2006. 1: p. 633-636.
89. Vanesa Sanza, C.T., Brigitte Soula, Emmanuel Flahautc, Helen M. Coley, S. Ravi P. Silva, Johnjoe McFadden, Chloroquine-enhanced gene delivery mediated by carbon nanotubes. Carbon, 2011. 49(15): p. 5348-5358.
90. Yamano, S., et al., Long-term efficient gene delivery using polyethylenimine with modified Tat peptide. Biomaterials, 2014. 35(5): p. 1705-15.
91. Ester J. Kwon, S.L., and Suzie H. Pun, A Truncated HGP Peptide Sequence That Retains Endosomolytic Activity and Improves Gene Delivery Efficiencies. MOLECULAR PHARMACEUTICS, 2010. 7(4): p. 1260-1265.
92. Parhiz H, H.M., Hatefi A, Shier WT, Farzad SA, Ramezani M., Molecular weight-dependent genetic information transfer with disulfide-linked polyethylenimine-based nonviral vectors. J Biomater Appl, 2013. 28(1): p. 112-124.
93. Hashemi M, P.B., Hatefi A, Ramezani M., Modified polyethyleneimine with histidine-lysine short peptides as gene carrier. Cancer Gene Ther., 2011. 18(1): p. 12-19.
94. S Moffatt, S.W.a.R.C., A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy. Gene Therapy, 2006. 13: p. 1512-1523.
95. Zaghloul EM, V.J., Zuber G, Smith CI, Lundin KE., Formulation and delivery of splice-correction antisense oligonucleotides by amino acid modified polyethylenimine. Mol Pharm, 2010. 7(3): p. 652-663.
96. Boeckle S, W.E., Ogris M., C- versus N-terminally linked melittin-polyethylenimine conjugates: the site of linkage strongly influences activity of DNA polyplexes. J Gene Med, 2005. 7(10): p. 1335-1347.
97. Li, J., et al., Hydrophobic oligopeptide-based star-block copolymers as unimolecular nanocarriers for poorly water-soluble drugs. Colloids Surf B Biointerfaces, 2013. 110: p. 183-90.
98. Zauner W, F.N., Haines AM., In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release, 2001. 71: p. 39-51.
99. Seong, J.H., et al., Polyethylenimine-based antisense oligodeoxynucleotides of IL-4 suppress the production of IL-4 in a murine model of airway inflammation. J Gene Med, 2006. 8(3): p. 314-23.
100. Myers, K.J., et al., Antisense oligonucleotide blockade of tumor necrosis factor-alpha in two murine models of colitis. J Pharmacol Exp Ther, 2003. 304(1): p. 411-24.
|