博碩士論文 102223034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.142.142.2
姓名 鐘紹恩(Shao-En Chung)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含硫官能基之內環狀中孔洞矽材合成與反 丁烯二酸金屬骨架材料之酵素催化應用
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文分成兩個部分:

第一部分為合成具有硫醇官能基之內環裝中孔洞材料,其是利用直接合成法得到具有硫醇官能基的中孔洞材料SBA-15-thiol,且進一步利用具有雙異氰酸酯官能基之化合物進行合環反應,達到在中孔洞材料上修飾上內環狀之結構,而合成條件在經過最佳化後反應時間進需2 小時且反應在室溫下即可進行。新合成之內環狀中孔洞材料其體表面積高達600m2/g,且孔徑大小約在60 Å ,而此材料依舊保有中孔洞矽材的高熱穩定性的特性。因此在材料擁有眾多的優勢下將其去對金屬離子做吸附實驗,期望會有相較於同類型材料有更好的的吸附能力及選擇性。

第二部分是利用水相合成反丁烯二酸金屬骨架材料 (Zr-fum MOF) 將碳酸酐酶 (Carbonic Anhydrase, CA) 以原位反應的方式包裹在材料當中,來進行碳酸酐酶催化。因材料的合成環境較酸低於蛋白可容忍的範圍,所以我們利用縮短合成時間的方式提前結束反應以保留蛋白的活性,而經由X光繞射圖及掃描式電子顯微鏡的影像可以得知在提前結束反應的材料依舊保留完好的結構與外型。在酵素活性測試中,由CA@Zr-fum MOF 可加速4-硝基苯乙酸酯的水解速度可看出,包覆在Zr-fum MOF 中的碳酸酐酶依然保有活性。
摘要(英) This research is divided into two parts which are majorly focusing on the synthesis of annulated mesoporous silica and microporous material of Zr-Fumarate MOF. In the first part, a series of annulated mesoporous silica (SBA-15) with mercapto functional groups are successfully synthesized under room temperature condition. In this study, we adjust the annulated design with several diisocyanate derivatives. The as-synthesized particles were characterized by X-ray diffraction, 13C NMR, FT-IR spectra, thermogravimetric analysis, nitrogen sorption isothermal, electron microscopy. Notably, these synthesis

conditions are also moderate that the modified SBA-15 materials remain merely no change in their chemical and physical property. Moreover, we also utilized these materials as sorbents for the removal of mercury ion under aqueous solutions, and the results also reveal the exceptional consequence.

In the second part, we developed an aqueous system to synthesize Zr-Fumarate MOF and an in-situ procedure to encapsulate biomolecules such as protein. In order to limit the impact of the acidity and harshness of the synthetic environment on carbonic anhydrase, the synthesis duration was reduced from 2 hours to 15 minutes. According to the result from powder X-ray diffraction patterns (XRD) and scanning electron microscope (SEM), enzyme-encapsulated Zr-fum MOF are still with well morphology. Furthermore, the enzyme activity test showed that enzyme-encapsulated Zr-fum MOF still maintained its activity after the synthetic procedure.
關鍵字(中) ★ 中孔洞矽材
★ 環狀結構
★ 重金屬吸附
★ 金屬有機骨架材料
★ 固定化酵素
關鍵字(英)
論文目次 中文摘要 I

Abstract II

謝誌 III

目錄 IV

圖目錄 VI

表目錄 VII

Part I 1

第1章 緒論 1

1.1 中孔洞分子篩材料介紹 1

1.1.1 簡介 1

1.1.2 發展史 2

1.2 界面活性劑 5

1.2.1 簡介 5

1.2.2 界面活性劑分類 6

1.2.3 微胞的形成與結構 7

1.3 合成中孔洞材料 9

1.3.1 中孔洞材料合成條件 9

1.3.2 界面活性劑和矽氧化物的交互作用 10

1.3.3 合成中孔洞材料 11

1.3.4 中孔洞材料表面修飾官能基 12

1.4 中孔洞材料的應用 14

1.5 研究動機與目的 16

第2章 實驗 18

2.1 實驗藥品 18

2.2 實驗步驟 19

2.2.1 合成具硫醇官能基的SBA-15 19

2.2.2 移除中孔洞分子篩中的模板 20

2.2.3 合成具環狀結構的Annulatd-SBA-15 系列 20

2.3 實驗設備 21

2.3.1 實驗合成設備 21

2.3.2 實驗鑑定儀器 21

2.4 鑑定儀器之原理 22

2.4.1 X射線粉末繞射儀 (PXRD) 22

2.4.2 傅立葉傳換紅外線吸收光譜儀 (FT-IR) 24

2.4.3 固態核磁共振儀 (Solid-State NMR) 25

2.4.4 掃描式電子顯微鏡 (SEM) 29

2.4.5 等溫氮氣吸/脫附儀 (ASAP) 30

2.4.6 熱重分析儀 (TGA) 32

第3章 結果與討論 34

3.1 結構鑑定 34

3.1.1 PXRD鑑定結果 34

3.1.1 SEM影像. 35

3.1.2 29Si MAS NMR 鑑定結果 36

3.1.3 FT-IR 鑑定結果 37

3.1.4 13C CP/MAS NMR 鑑定結果 40

3.1.5 等溫氮氣吸脫附鑑定結果 42

3.1.6 熱重分析 44

3.2 環狀結構Annulatd-SBA-15系列吸附汞金屬實驗結果 45

第4章 結論 47

第5章 緒論 48

5.1 金屬有機骨架材料 48

5.2 反丁烯二酸金屬骨架材料 (Zr-fum MOF) 49

5.3 固定化酵素 (Immobilized Enzyme) 50

5.4 碳酸酐酶 (Carbonic Anhydrase, CA) 53

5.5 研究動機 55

第6章 實驗部分 57

6.1 實驗藥品 57

6.2 實驗儀器與方法 58

6.2.1 紫外光可見光分光光譜儀 (UV/VIS Spectrophotometer) 58

6.2.2 反丁烯二酸金屬骨架包覆碳酸酐酶材料 (CA@Zr-fum MOF) 的合成 58

6.2.3 反丁烯二酸金屬骨架包覆碳酸酐酶材料 (CA@Zr-fum MOF)的活性測試 59

第7章 結果與討論 62

7.1 反丁烯二酸金屬骨架包覆碳酸酐酶材料 (CA@Zr-fum MOF)的鑑定 62

7.2 反丁烯二酸金屬骨架包覆碳酸酐酶材料 (CA@Zr-fum MOF)的活性 62

第8章 結論與未來展望 64

參考文獻 65

第9章 附錄 72

9.1 類沸石咪唑骨架材料 ( Zeolitic Imidazolate Frameworks) 72

9.2 類沸石咪唑骨架材料-61 74

9.3 利用醇水混和合成類沸石咪唑骨架材料-61 74

9.4 結果與討論 75

參考文獻 1. McBain, J. W., The Sorption of Gases and Vapours by Solids. The Journal of Physical Chemistry 1932, 37 (1), 149-150.

2. Ciesla, U.; Schüth, F., Ordered mesoporous materials. Microporous and Mesoporous Materials 1999, 27 (2–3), 131-149.

3. Lee, C.-H.; Lin, T.-S.; Mou, C.-Y., Mesoporous materials for encapsulating enzymes. Nano Today 2009, 4 (2), 165-179.

4. Shieh, F.-K.; Hsiao, C.-T.; Wu, J.-W.; Sue, Y.-C.; Bao, Y.-L.; Liu, Y.-H.; Wan, L.; Hsu, M.-H.; Deka, J. R.; Kao, H.-M., A bioconjugated design for amino acid-modified mesoporous silicas as effective adsorbents for toxic chemicals. Journal of Hazardous Materials 2013, 260 (0), 1083-1091.

5. Appell, M.; Jackson, M. A.; Dombrink-Kurtzman, M. A., Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15. Journal of Hazardous Materials 2011, 187 (1–3), 150-156.

6. Shah, P.; Sridevi, N.; Prabhune, A.; Ramaswamy, V., Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15. Microporous and Mesoporous Materials 2008, 116 (1–3), 157-165.

7. Halamová, D.; Badaničová, M.; Zeleňák, V.; Gondová, T.; Vainio, U., Naproxen drug delivery using periodic mesoporous silica SBA-15. Applied Surface Science 2010, 256 (22), 6489-6494.

8. Lin, Q.; Huang, Q.; Li, C.; Bao, C.; Liu, Z.; Li, F.; Zhu, L., Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. Journal of the American Chemical Society 2010, 132 (31), 10645-10647.

9. Zhu, C.-L.; Lu, C.-H.; Song, X.-Y.; Yang, H.-H.; Wang, X.-R., Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. Journal of the American Chemical Society 2011, 133 (5), 1278-1281.

10. Zhao, X. S.; Bao, X. Y.; Guo, W.; Lee, F. Y., Immobilizing catalysts on porous materials. Materials Today 2006, 9 (3), 32-39.

11. Zhang, J.; Yuan, Z.-F.; Wang, Y.; Chen, W.-H.; Luo, G.-F.; Cheng, S.-X.; Zhuo, R.-X.; Zhang, X.-Z., Multifunctional Envelope-Type Mesoporous Silica Nanoparticles for Tumor-Triggered Targeting Drug Delivery. Journal of the American Chemical Society 2013, 135 (13), 5068-5073.

12. Climent, E.; Martínez-Máñez, R.; Sancenón, F.; Marcos, M. D.; Soto, J.; Maquieira, A.; Amorós, P., Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition 2010, 49 (40), 7281-7283.

13. Machida, M.; Fotoohi, B.; Amamo, Y.; Ohba, T.; Kanoh, H.; Mercier, L., Cadmium(II) adsorption using functional mesoporous silica and activated carbon. Journal of Hazardous Materials 2012, 221–222 (0), 220-227.

14. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.

15. Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L., Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications. Chemistry of Materials 1994, 6 (12), 2317-2326.

16. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317-321.

17. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F., Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chemistry of Materials 1994, 6 (8), 1176-1191.

18. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R., Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature 2000, 408 (6811), 449-453.

19. Tanev, P. T.; Pinnavaia, T. J., A Neutral Templating Route to Mesoporous Molecular Sieves. Science 1995, 267 (5199), 865-867.

20. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548-552.

21. Thu, P.; Thanh, T.; Phi, H.; Kim, S.; Vo, V., Adsorption of lead from water by thiol-functionalized SBA-15 silicas. J Mater Sci 2010, 45 (11), 2952-2957.

22. Liu, J.; Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Gong, M., Hybrid Mesoporous Materials with Functionalized Monolayers. Advanced Materials 1998, 10 (2), 161-165.

23. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568.

24. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.

25. Wu, Z.; Zhao, D., Ordered mesoporous materials as adsorbents. Chemical Communications 2011, 47 (12), 3332-3338.

26. Heidari, A.; Younesi, H.; Mehraban, Z., Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chemical Engineering Journal 2009, 153 (1–3), 70-79.

27. Ravi, S.; Selvaraj, M., Incessant formation of chain-like mesoporous silica with a superior binding capacity for mercury. Dalton Transactions 2014, 43 (14), 5299-5308.

28. Bandaru, N. M.; Reta, N.; Dalal, H.; Ellis, A. V.; Shapter, J.; Voelcker, N. H., Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. Journal of Hazardous Materials 2013, 261 (0), 534-541.

29. Shieh, F.-K.; Hsiao, C.-T.; Kao, H.-M.; Sue, Y.-C.; Lin, K.-W.; Wu, C.-C.; Chen, X.-H.; Wan, L.; Hsu, M.-H.; Hwu, J. R.; Tsung, C.-K.; Wu, K. C. W., Size-adjustable annular ring-functionalized mesoporous silica as effective and selective adsorbents for heavy metal ions. RSC Advances 2013, 3 (48), 25686-25689.

30. Štandeker, S.; Veronovski, A.; Novak, Z.; Knez, Ž., Silica aerogels modified with mercapto functional groups used for Cu(II) and Hg(II) removal from aqueous solutions. Desalination 2011, 269 (1–3), 223-230.

31. Lagadic, I. L.; Mitchell, M. K.; Payne, B. D., Highly Effective Adsorption of Heavy Metal Ions by a Thiol-Functionalized Magnesium Phyllosilicate Clay. Environmental Science & Technology 2001, 35 (5), 984-990.

32. Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H.-M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chemical Communications 2009, (33), 5018-5020.

33. Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D., Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials 2000, 12 (8), 2448-2459.

34. University of Zakho , Chemistry Department (http://www.slideshare.net/HaydarKovly/infrared-spectroscopy-analyse-the-functional-groups-of-benzoic-acid).

35. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society 1938, 60 (2), 309-319.

36. Langmuir, I., THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. Journal of the American Chemical Society 1918, 40 (9), 1361-1403.

37. Sing, K. S. W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). In Pure and Applied Chemistry, 1985; Vol. 57, p 603.

38. Gibbons, G. J.; Holland, D.; Howes, A. P., Structure Development in Simple Cross-Linked Organopolysiloxanes. Journal of Sol-Gel Science and Technology 1998, 13 (1-3), 379-383.

39. Li, H.; Eddaoudi, M.; O′Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.

40. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O′Keeffe, M.; Yaghi, O. M., Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295 (5554), 469-472.

41. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319 (5865), 939-943.

42. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.

43. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.

44. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.

45. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.

46. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.

47. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.

48. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 703-723.

49. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chemical Reviews 2012, 112 (2), 869-932.

50. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231.

51. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083.

52. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.

53. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.

54. Li, S.-L.; Xu, Q., Metal-organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.

55. Schaate, A.; Roy, P.; Preuße, T.; Lohmeier, S. J.; Godt, A.; Behrens, P., Porous Interpenetrated Zirconium–Organic Frameworks (PIZOFs): A Chemically Versatile Family of Metal–Organic Frameworks. Chemistry – A European Journal 2011, 17 (34), 9320-9325.

56. Sbircea, L.; Sharma, N. D.; Clegg, W.; Harrington, R. W.; Horton, P. N.; Hursthouse, M. B.; Apperley, D. C.; Boyd, D. R.; James, S. L., Chemoenzymatic synthesis of chiral 4,4[prime or minute]-bipyridyls and their metal-organic frameworks. Chemical Communications 2008, (43), 5538-5540.

57. Yang, J.-X.; Qin, Y.-Y.; Cheng, J.-K.; Yao, Y.-G., Tuning Different Kinds of Entangled Networks by Varying N-Donor Ligands: From Self-Penetrating to Multi-interpenetrating. Crystal Growth & Design 2014, 14 (3), 1047-1056.

58. Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C., Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. Journal of Materials Chemistry 2011, 21 (7), 2220-2227.

59. Wißmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P., Modulated synthesis of Zr-fumarate MOF. Microporous and Mesoporous Materials 2012, 152 (0), 64-70.

60. Zahn, G.; Zerner, P.; Lippke, J.; Kempf, F. L.; Lilienthal, S.; Schroder, C. A.; Schneider, A. M.; Behrens, P., Insight into the mechanism of modulated syntheses: in situ synchrotron diffraction studies on the formation of Zr-fumarate MOF. CrystEngComm 2014, 16 (39), 9198-9207.

61. Cunha, D.; Ben Yahia, M.; Hall, S.; Miller, S. R.; Chevreau, H.; Elkaïm, E.; Maurin, G.; Horcajada, P.; Serre, C., Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal–Organic Frameworks. Chemistry of Materials 2013, 25 (14), 2767-2776.

62. Messing, R. A., Chapter 1 - INTRODUCTION AND GENERAL HISTORY OF IMMOBILIZED ENZYMES. In Immobilized Enzymes for Industrial Reactors, Messing, R. A., Ed. Academic Press: 1975, pp 1-10.

63. Datta, S.; Christena, L. R.; Rajaram, Y., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.

64. Brady, D.; Jordaan, J., Advances in enzyme immobilisation. Biotechnol Lett 2009, 31 (11), 1639-1650.

65. Chen, Y.; Lykourinou, V.; Hoang, T.; Ming, L.-J.; Ma, S., Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes. Inorganic Chemistry 2012, 51 (17), 9156-9158.

66. Wong, L. S.; Thirlway, J.; Micklefield, J., Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. Journal of the American Chemical Society 2008, 130 (37), 12456-12464.

67. Hsieh, H.-J.; Liu, P.-C.; Liao, W.-J., Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol Lett 2000, 22 (18), 1459-1464.

68. Ispas, C.; Sokolov, I.; Andreescu, S., Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem 2009, 393 (2), 543-554.

69. Bernfeld, P.; Wan, J., Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science 1963, 142 (3593), 678-679.

70. Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W., Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry 2011, 46 (8), 1565-1571.

71. Wang, Z.-G.; Wan, L.-S.; Liu, Z.-M.; Huang, X.-J.; Xu, Z.-K., Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis. B, Enzymatic 2009, 56 (4), 189-195.

72. Wen, H.; Nallathambi, V.; Chakraborty, D.; Calabrese Barton, S., Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchim Acta 2011, 175 (3-4), 283-289.

73. Kim, J.; Jia, H.; Wang, P., Challenges in Biocatalysis for Enzyme-Based Biofuel Cells. Journal Name: Biotechnology Advances, 24(296-308 2006, Medium: X.

74. Edwards, R.; Dixon, D. P.; Walbot, V., Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science 2000, 5 (5), 193-198.

75. Mainwaring, G. W.; Nash, J.; Davidson, M.; Green, T., Isolation of a mouse theta glutathione S-transferase active with methylene chloride. Biochemical Journal 1996, 314 (Pt 2), 445-448.

76. C, H., Milk thistle : the liver herb.Capitol, CA. Capitola, CA: Botanical Press, 1992.

77. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.

78. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.





指導教授 謝發坤(Fa-KuenShieh) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明