參考文獻 |
1. P. Alexandridis and J. F. Holzwarth. “Block Copolymers”, Curr. Opin. Colloid Interface Sci., 5, 312 (2000).
2. F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, G. H. Fredrickson. “Multiblock Polymers: Panacea or Pandora′s Box”, Science, 336, 434 (2012).
3. S.P. Hsu, Y.S. Sun. “Controls over Microdomain in Diblock Copolymer Thin Films by Polar/Nonpolar Cosolvent Annealing”, 國立中央大學化學工程研究所碩士論文 (2010).
4. L. Leibler. “Theory of Microphase Separation in Block Copolymers”, Macromolecules, 13, 1062 (1980).
5. M. W. Matsen, F. S. Bates. “Unifying Weak- and Strong-Segregation Block Copolymer Theories”, Macromolecules, 29, 1091 (1996).
6. A. K. Khandpur, S. Forster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortennsen. “Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition”, Macromolecules, 28, 8796 (1995).
7. S. Park, B. Kim, J. Xu, T. Hofmann, B. M. Ocko, T. P. Russell. “Lateral Ordering of Cylindrical Microdomains Under Solvent Vapor”, Macromolecules, 42, 1278 (2009).
8. Y. S. Jung, C. A. Ross. “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns”, Adv. Mater., 21, 2540 (2009).
9. Z. Y. Guo, M. S. Lin, Y. T. Chang, Y. S. Sun, Y. W. Chiang, C. Y. Chou, W. Y. Woon, M. C. Chuang. “Surface relief terraces and self-assembled nanostructures in thin block copolymer films with solvent annealing”, Polymer, 53, 4827(2012).
10. Zhisheng Gaot and Adi Eisenberg. “A Model of Micellization for Block Copolymers in Solutions”, Macromolecules, 26, 7353-7360(1993).
11. Riess, G. Prog. “Micellization of Block Copolymers”, Polym. Sci., 28, 1107-1170(2003).
12. Tomasz Kowalewski, Nicolay V. Tsarevsky, and Krzysztof Matyjaszewski. “Nanostructured Carbon Arrays from Block Copolymers of Polyacrylonitrile”, Journal of the American Society, 124, 10632-10633 (2002).
13. M. Zhong, E. K. Kim, P. McGann, S. E. Chun, Jay F. Whiteacre, M. Jaroniec, K. Matyjaszewski, T. Kowalewski. “Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer”, Journal of the American Society, 2012, 134, 14846.
14. M. Zhong, S. Jiang, Y. Tang, E. Gottlieb, E. K. Kim, A. Star, K. Matyjaszewski, T. Kowalewski. “Block copolymer-templated nitrogen-enriched nanocarbons with morphology-dependent electrocatalytic activity for oxygen reduction”, Chem. Sci., 2014, 5, 3315.
15. S. Chen, Z. Wei, L. Guo, W. Ding, L. Dong, P. Shen, X. Qia, L. Lia. “Enhanced dispersion and durability of Pt nanoparticles on thiolated CNT support”, Chemical Communication, 2011, 47, 10984-10986.
16. S. Chen, Z. Wei, X. Qi, L. Dong, Y. G. Guo, L. Wan, Z. Shao, L Li. “Nanostructured polyaniline-decorated Pt/C, PANI core, Shell catalyst with enhanced durability and activity”. Journal of the American Society, 2012, 134(32), 13252-13255.
17. S. Chen, Z. Wei, H. Lib, L. Lib. “High Pt utilization PEM-FC electrode obtained by alternative ion-exchange/electrode-position”. Chemical Communications, 2010, 46, 8782-8784.
18. R. Jasinski. “A new fuel cell cathode catalyst”. Nature, 1964, 201, 1212-1213.
19. J. Lee, T. Aida. “Bucky gels for tailoring electroative materials with ionic liquid”. Chemical Communications, 2011, 47, 6757-6762.
20. J. Maruyama, I. Abe. “Structure control of a carbon-based noble-metal-free fuel cell cathodes catalyst leading to high power output”. Chemical communications, 2007, 27, 2879-2881.
21. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai. “Co3O4 Nano-particles on graphene as a synergistic catalyst for oxygen reduction reaction”. Nature Materials, 2011, 10, 780-786.
22. Y. Cheng, H. Zhang, C. V. Varanasi, J. Liu. “Nitrogen-doped carbon nanotubes array as a synergistic activity for oxygen”. Science, 2009, 323(5915), 750764.
23. J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic. “Stabilization of platinum oxygen-reduction electrocatalytic using gold cluster”. Science, 2007, 315(5809), 220-224.
24. Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao and G. Shi. “Chemical converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst”. Chemical Communications, 2010, 46, 4740-4742.
25. A. Serov, K. C. Kwa. “Review of non-platinum anode catalysts for DMFC and PEMFC application”. Applied Catalysis B-Environmental, 2009, 90, 313-320.
26. W. Qi, D. Su. “Metal-free heterogeneous catalysis for sustainable chemistry”. ChemSusChem, 2010, 3, 169-180.
27. J. Ma1, X. Wang, X. Jiao. “High rates of oxygen reduction over a vapor phase-poly-merized PEDOT electrode”. Science, 2008, 321, 671-674.
28. L. Yang1, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu. “Boron-doped carbon nanotubes as metal-free eletrocatalysts for the oxygen reduction reaction”. Angewandte Chemie-International Edition, 2011, 50, 7132-7135.
29. Z. Liu, F. Peng, H. J. Wang, H. Yu, W. X. Zheng, J. Yang. “Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium”. Angewandte Chemie-International Edition, 2011, 50, 3257-3261.
30. L. Wang, A. Ambrosi, M. Pumera. “Metal free catalytic oxygen reduction reaction on heteroatomdoped graphene is caused by trace metal impurity”. Angewandte Chemie-International Edition, 2013, 52, 13818-13821.
31. Y. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, “Can boron and nitrogen Co-doping improve oxygen reduction reaction activity of carbon nanotubes?” Journal of the American Society, 2013, 135, 1201-1204.
32. Y. Okamoto. “First-principle molecular dynamics simulation of O2 reduction on nitrogen-doped carbon”. Applied Surface Since, 2009, 256, 335-341.
33. L. Qu, Y. Liu, J. Baek, L. Dai. “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells”. ACS Nano, 2010, 4, 1321-1326.
34. S. Yang, X. Feng, X. Wang, K. Müllen. “Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalyst for oxygen reduction”. Angewandte Chemie-International Edition, 2011, 50, 5339-5343.
35. Z. Sheng, H. Gao, W. Bao, F. Wang, X. Xia. “Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells”. Journal of materials Chemistry, 2012, 22, 390-395.
36. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. Chen, S. Huang. “Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction reaction”. ACS Nano, 2012, 6, 205-211.
37. Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu, S. Huang. “Catalyst-free synthesis of iodine-doped graphene via facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium”. Chemical communications, 2012, 48, 1027-1029.
38. Liu R L, Wu D Q, Feng X L, et al. “Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction”. Angewandte Chemie-International Edition, 2010, 49, 2565-2569.
39. R. Liu, D. Wu, X. Feng, K. Müllen. “Nitrogen-doped graphene and its electrochemical application”. Journal of materials Chemistry, 2010, 20, 7491-7496.
40. D. Yu, Q. Zhang, L. Dai. “Highly efficient metal-free growth of nitrogen-doped single walled carbon nanotubes on plasma-etched substrates for oxygen reduction”. Journal of the American Society, 2010, 132, 15127-15129.
41. S. Wang, D. Yu, L. Dai. “Polyelectrolyte functionalized carbon nanotubes as efficient metal-free electrocatalysts for oxygen reduction”. Journal of the American Society, 2011, 133, 5182-5185.
42. D. Yu, E. Nagelli, F. Du, L. Dai. “ Metal-free carbon nano-materials become more active than metal catalysts and last longer”. Journal of Physical Chemistry letters, 2010, 1, 2165-2173.
43. X. Wang, J. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai. “Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reactions”. Chemistry of Materials, 2010, 22, 2178-2180.
44. J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl, D. S. Su. “Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane”. Science, 2008, 322, 73-77.11
45. A. V. Okotrub, L. G. Bulusheva, A. G. Kudashov, V. V. Belavin, D. V. Vyalikh, S. L. Molodtsov. “Orientation ordering of nitrogen molecules in vertically aligned CNx nanotubes”. Applied physics A-material Science and Processing, 2009, 94, 437-443.
46. E. J. Biddinger, D. V. Deak, U. S. Ozkan. “Nitrogen-containing carbon N as oxygen-reduction catalysts”. Topics in Catalysis, 2009, 52, 1566-1574.
47. C. L. Sun, H. W. Wang, M. Hayashi, L. C. Chen, K. H. Chen, “Atomic-scale deformation in N-doped carbon nanotubes”. Journal of the American Society, 2006, 128, 8368-8369.
48. M. Terrones, P.M. Ajayan, F. Banhart, X. Blase, D. L. Carroll, J. C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Rühle, T. Seeger, H. Terrones. “N-doped and coalescence of carbon nanotubes: Synthesis and electronic properties”. Applied physics A-material Science and Processing, 2002, 74, 355-461.
49. L. S. Panchakarla, A. Govindaraj, C. N. R. Rao. “Nitrogen- and Boron-doped double-walled carbon nanotubes”. ACS Nano, 2007, 1, 494-500.
50. W.Y. Wonga, W.R.W. Dauda, A.B. Mohamada, A.A.H. Kadhuma, K.S. Loha, E.H. Majlana. “Recent progress in nitrogen-doped carbon and its compositions as electrocatalysts for fuel cell application”. International Journal of Hydrogen Energy, 2013, 38, 9370-9386.
51. S. Maldonado, K. J. Stevenson. “Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes”. Journal of Physical chemistry B, 2005, 109(10), 4707-4716.
52. S. Chen, X. Z. Wang, H. X. Zhong, L. Yang, C. Zhang, Y. Ma, Q. Wu, X. Wang, Z. Hu. “Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction”. Advanced materials, 2012, 24, 5593-5597.
53. H. Jin, H. Zhang, H. Zhonga, J. Zhang. “Nitrogen-doped carbon Xerogel: A novel carbon-based electrocatalysts for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells”. Energy and Environment Science, 2011, 4, 3389-3394.
54. G. Ma, R. Jia, J. Zhao, Z. Wang, C. Song, S. Jia, Z. Zhu. “Nitrogen-doped hollow carbon nanoparticles with excellent oxygen reduction performances and their electrocatalytic Kinetics”. Journal of Physical Chemistry C, 2011, 115, 25148-25154.
55. D. Yu, L. Wei, W. Jiang, H. Wang, B Sun, Q. Zhang, K. Goh, R. Sia, Y. Chen. “Nitrogen doped holey graphene as efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation”. Nanoscale, 2013, 5, 3457-3464.
56. D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W. Li, Qi. Fu, X. Ma, Q. Xue, G. Sun, X. Bao. “Toward N-doped graphene via solvent-thermal synthesis”. Chemistry of Materials, 2011, 23, 1188-1193.
57. Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin. “Pyridinic N doped graphene: Synthesis, electronic structures, and electrocatalytic property”. Journal of materials Chemistry, 2011, 21, 8038-8044.
58. C. V. Rao, C. R. Cabrera, Y. Ishikawain. “Search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction”. Journal of Physical Chemistry Letters, 2010, 1, 2622-2627.
59. S. M. Unni, S. Devulapally, N. Karjulea, S. Kurungot. “Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction”. Journal of Materials Chemistry, 2012, 22, 23506-23513.
60. W. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L. Wan, S. F. Alvi, L. Li. “Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction”. Angewandte Chemie-International Edition, 2013, 52, 11755-11759.
61. J. Tian, A. Morozan, M. T. Sougrati, M. Lefèvre, R. Chenitz, J. Dodelet, D. Jones, F. Jaouen. “Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: A matter of iron-ligand coordination strength”, Angewandte Chemie-International Edition, 2013, 52, 6867-6870.
62. M. Sc. Yang Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J. Bjerrum, Q. Li. “Hollow spheres of iron carbide nanoparticles encased in graphite layers as oxygen reduction catalysts”. Angewandte Chemie-International Edition, 2014, 53, 3675-3679.
63. M. Lefèvre, E. Proietti, F. Jaouen, J. Dodelet. “Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells”. Science, 2009, 324, 71-74.
64. H. Liang, W. Wei, Z. Wu, X. Feng, K. Müllen. “Mesoporous metal-nitrogen-doped carbon eletrocatalysts for highly efficient oxygen reduction reaction”. Journal of the American Society, 2013, 135, 16002-16005.
65. G. Wu, K. More, C. M. Johnston, P. Zelenay. “High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron and cobalt”. Science, 2011, 332, 443-447.
66. S. Zhang, H. Zhang, Q. Liua, S. Chen. “Fe-N doped carbon nanotube/graphene composite: Facile synthesis and superior electrocatalytic activity”. Journal of Materials chemistry A, 2013, 1, 3302-3308.
67. D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao. “Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction”. Angewandte Chemie-International Edition, 2012, 52(1), 371-375.
68. A. M. Lyons, E. M. Pearce, A. M. Mujsce. “Thermal decomposition of Poly(2-vinylpyridine): effect of complexation with copper chloride”. J. Polymer Sci. Part A ,1990, 28, 245–259
69. Barton, A.F.M., CRC Handbook of Solubility Parameters and Other Cohesion Parameters. 1911.
70. G.Y. Liou, Y.S. Sun. “Tailoring Nanostructure of Diblock Copolymer by
Photochemistry and Its Application in Spatial Control of Ag and Ag@Au
nanoparticles”, 國立中央大學化學工程研究所博士論文 (2014).
71. F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite”, J. Chem. Phys. 1970, 53, 1126.
72. Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. “High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications”. Nature Mater. 2006, 5, 567–573 .
73. T. Yamashita , P. Hayes, “Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials”. Applied Surface Science, 2008, 254, 2441–2449
74. L. Wang, J. Yin, L. Zhao, C. Tian, P. Yu, J. Wang and H. Fu, “Ion-exchanged route synthesis of Fe2N–N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst”, Chem. Commun., 2013, 49, 3022.
75. J. Liu, B. Yu, Q. Zhang, L. Hou, Q. Huang, C. Song, S. Wang, Y. Wu, Y. He, J. Zou, H. Huang, “Synthesis and magnetic properties of Fe3C-C core-shell nanoparticles”, Nanotechnology, 2015, 26, p. 085601
|