博碩士論文 102331017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.144.189.177
姓名 洪寅傑(Yin-Jie Hong)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 探討區域性大腦網路恢復於睡眠遲惰研究
(Investigating the Brain Recovering along Sleep Inertia using fMRI)
相關論文
★ 應用希爾伯特黃轉換於功能性磁振造影之非穩態信號分析★ 評估生理雜訊對於靜息態功能性磁振造影之影響
★ 瀕死狀態下大腦功能性聯結之動態變化:觀察氯化鉀注射後大鼠之生理反應★ 探討同步功能性磁振造影與腦電圖於夜間睡眠研究
★ 利用同步腦電圖與功能性磁振造影探討睡眠階段之大腦活動★ 以腦電圖觀察大腦恢復清醒的動態歷程
★ 中風復健與大腦的神經可塑性變化: 縱貫性功能性磁振造影研究★ 以功能性磁振造影初探分心於創意醞釀之影響
★ 以靜息態功能性磁振造影探討頸動脈支架手術對於頸動脈狹窄病患大腦功能之影響★ 運用石墨烯射頻線圈增進7T磁振造影訊雜比之研究
★ 睡眠遲惰期間警覺網路於執行警覺任務下的動態恢復歷程
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 睡眠佔了人的一生將近三分之一的時間,是人類維持正常生理機能以及消除疲勞的 重要歷程。 然而,若沒有良好的睡眠習慣及睡眠效率,睡醒之後我們將面對睡眠遲惰 所帶來的短暫負面影響。所謂的睡眠遲惰是從睡眠中覺醒後的暫時性功能下降,包含行 為以及認知功能,亦懷疑可能是大腦網路尚未回復聯結的狀態。先前研究指出,睡眠遲 惰的持續時間有可能從幾分鐘至幾小時,但其與大腦網路的關聯性所知甚少。因此在本 研究中,我們將試圖探討睡眠遲惰對大腦網路影響的動態歷程。我們利用同步記錄腦電 圖訊號與功能性磁振造影訊號之技術來進行十位正常受試者的睡眠遲惰研究,其中觀察 受試者在經過夜間睡眠後的睡眠遲惰程度以及大腦網路在清醒後的動態變化。我們著重 於研究三個主要關於睡眠調節、運動相關的大腦網路: 1. 預設模式網路 (Default Mode Network) 2. 感覺運動網路 (Sensory Motor Network) 3. 丘腦-皮層網路 (Thalamo-Cortical)。結果發現,受試者於認知行為測試中的反應時間長短在睡醒後有 明顯地提昇 (約睡醒後五十分鐘),而大腦網路在睡眠遲惰期間,大腦的連結及活化依 舊持續地在改變及重整。但將低頻振幅與功能性連結相比,低頻部分 (0.01-0.1Hz) 則 沒有隨著清醒時間而產生明顯的變化。另外我們觀察到行為表現和大腦的活化呈現相反 的趨勢,且感覺運動網路在慣用/非慣用腦區在睡後的連結及活化有明顯的強弱及變化 差異。其中,丘腦的連結及活化在睡後有著明顯的下降,但是與皮層和感覺運動網路之 間的連結卻有逐漸增強的趨勢。因此,我們認為丘腦似乎在睡眠遲惰期間扮演著重要的 角色,負責調節深層腦區與皮層之間感覺運動相關的大腦網路功能,進而影響我們的行 為表現。
摘要(英) Sleep is an important procedure, which can reboot our brain and refresh our body. However, the sleep inertia occurred immediately after sleeping, if we did not have good sleep habit and efficient. Sleep inertia is transition state, which can attenuate our behavior/cognitive performance in a period of time. Until now, the mechanisms of sleep inertia are poorly understood, but suppose to the connections of brain networks did not recovered to the original level. Previous studies indicated that the sleep inertia duration may last minutes to hours, but rarely understand the brain working patterns during these times. In present study, we used the simultaneous EEG-fMRI recording to investigate the dynamic changes after awakening. We also combine the behavior and fMRI to observe the interactions between functional connectivity and βPVT. In the results, we found that the brain keeps the reorganization after awakening. The participant′s behavior performance reaction time shows the significantly increased after awakening fifty minutes. ALFF did not show the difference in the lower frequency bands 0.01 to 0.1 Hz. Besides, we found the opposite phenomenon between behavior performance and βPVT. Furthermore, the different strength and specific changes occurred in the sensory motor network (SMN) after awakening, no matter in connectivity and PVT. It seems the brain have difference in dominant and non-dominant side during sleep inertia period. The thalamus connectivity and βPVT have significant decreased after awakening, but the connections between cortical/SMN was increased. We infer that thalamo-cortical play the key role to handle the sensory related functions during sleep inertia period, thereby affecting our behavior performance.
關鍵字(中) ★ 睡眠遲惰
★ 功能性磁振造影
★ 功能性連結
★ 丘腦-皮層網路
★ 低頻振幅
★ 精神運動警戒任務
關鍵字(英) ★ sleep inertia
★ fMRI
★ functional connectivity
★ thalamo-cortical
★ amplitude of low-frequency fluctuations (ALFF)
★ psychomotor vigilance task (PVT)
論文目次 致謝 I

中文摘要 VII

Abstract VIII

Contents IX

List of Figures XI

List of Tables XIII

Chapter 1. Introduction 1

1-1 Sleep 1

1-2 Sleep Scoring 3

1-3 Brain Dynamic Processes Across Sleep-Wake Transitions 4

1-4 Sleep Inertia Phenomenon 8

1-5 Research Motivation 12

Chapter 2. Materials & Methods 14

2-1 Participants 14

2-2 Experiment Design 14

2-3 Actigraphy 16

2-4 EEG Protocol 16

2-5 Functional MRI 18

2-5.1 Functional MRI Protocol 18

2-5.2 Task fMRI Analysis 20

2-5.3 Resting-State fMRI Preprocess 22

2-5.3.1 Functional Connectivity Analysis 23

2-5.3.2 Amplitude of Low Frequency Fluctuation Analysis 24

2-6 Group Analyses 26

2-7 Correlation Matrix 27

Chapter 3. Results 28

3-1 Behaviors 28

3-1.1 Participant’s Information 28

3-1.2 Sleep Logs before Experiment Day 29

3-1.3 Sleep Scoring during Experiment Day 31

3-1.4 Reaction Time of PVT Tasks 33

3-1.5 Correlation between Behavior Results 35

3-2 Sleep Inertia in Neuroimaging 37

3-2.1 PVT during Task 37

3-2.2 ALFF 39

3-2.3 Functional Connectivity 40

3-2.4 Correlation of Global Connectivity (Rest/PVT) 45

3-2.5 Interactions between Resting-state and Task-reduced status 59

Chapter 4. Discussion 61

4-1 Sleep Inertia Duration 61

4-2 Criterion of Suffer the Sleep Inertia 62

4-3 Inspection of Dynamic Processes upon Awakening by the Interaction between Tasked-Induced Activity and Intrinsic Functional Connectivity 63

4-4 Consciousness switching upon awakening 64

4-5 Comparison with Previous Study 65

4-6 Fusion 66

4-7 Combination of EEG and Functional MRI during Sleep Inertia 67

Chapter 5. Conclusion 69

References 70



參考文獻 Achermann, P., Werth, E., Dijk, D.J., Borbely, A.A. (1995) Time course of sleep inertia after nighttime and daytime sleep episodes. Arch Ital Biol, 134:109-19.

Armentrout, J.J., Holland, D.A., O′Toole, K.J., Ercoline, W.R. (2006) Fatigue and related human factors in the near crash of a large military aircraft. Aviat Space Environ Med, 77:963-70.

Aserinsky, E., Kleitman, N. (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science, 118:273-4.

Asplund, C.L., Chee, M.W. (2013) Time-on-task and sleep deprivation effects are evidenced in overlapping brain areas. NeuroImage, 82:326-35.

Balkin, T.J., Badia, P. (1988) Relationship between sleep inertia and sleepiness: cumulative effects of four nights of sleep disruption/restriction on performance following abrupt nocturnal awakenings. Biol Psychol, 27:245-58.

Boly, M., Perlbarg, V., Marrelec, G., Schabus, M., Laureys, S., Doyon, J., Pelegrini-Issac, M., Maquet, P., Benali, H. (2012) Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc Natl Acad Sci U S A, 109:5856-61.

Bruck, D., Pisani, D.L. (1999) The effects of sleep inertia on decision-making performance. Journal of sleep research, 8:95-103.

Cavallero, C., Versace, F. (2003) Stage at awakening, sleep inertia and performance. Sleep Research Online, 5:89-97.

Chow, H.M., Horovitz, S.G., Carr, W.S., Picchioni, D., Coddington, N., Fukunaga, M., Xu, Y., Balkin, T.J., Duyn, J.H., Braun, A.R. (2013) Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci U S A, 110:10300-5.

Curcio, G., Tempesta, D., Scarlata, S., Marzano, C., Moroni, F., Rossini, P.M., Ferrara, M., De Gennaro, L. (2013) Validity of the Italian version of the Pittsburgh Sleep Quality Index (PSQI). Neurol Sci, 34:511-9.

Davis, H., Davis, P.A., Loomis, A.L., Harvey, E.N., Hobart, G. (1937) Changes in Human Brain Potentials during the Onset of Sleep. Science, 86:448-50.

Dinges, D.F., Orne, M.T., Orne, E.C. (1985) Assessing performance upon abrupt awakening from naps during quasi-continuous operations. Behavior Research Methods, Instruments, & Computers, 17:37-45.

Dinges, D.F., Orne, M.T., Whitehouse, W.G., Orne, E.C. (1987) Temporal placement of a nap for alertness: contributions of circadian phase and prior wakefulness. Sleep, 10:313-29.

Ferrara, M., De Gennaro, L. (2000) The sleep inertia phenomenon during the sleep-wake transition: theoretical and operational issues. Aviat Space Environ Med, 71:843-8.

Ferrara, M., De Gennaro, L., Bertini, M. (1999) The effects of slow-wave sleep (SWS) deprivation and time of night on behavioral performance upon awakening. Physiology & behavior, 68:55-61.

Ferrara, M., De Gennaro, L., Ferlazzo, F., Curcio, G., Barattucci, M., Bertini, M. (2001) Auditory evoked responses upon awakening from sleep in human subjects. Neurosci Lett, 310:145-8.

Ferrara, M., De Gennaro, L., Ferlazzo, F., Curcio, G., Cristiani, R., Bertini, M. (2002) Topographical changes in N1-P2 amplitude upon awakening from recovery sleep after slow-wave sleep deprivation. Clin Neurophysiol, 113:1183-90.

Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V. (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A, 100:253-8.

Hayashi, M., Fukushima, H., Hori, T. (2003a) The effects of short daytime naps for five consecutive days. . Sleep Research Online, 5:12-17.

Hayashi, M., Masuda, A., Hori, T. (2003b) The alerting effects of caffeine, bright light and face washing after a short daytime nap. Clin Neurophysiol, 114:2268-78.

Heine, L., Soddu, A., Gomez, F., Vanhaudenhuyse, A., Tshibanda, L., Thonnard, M., Charland-Verville, V., Kirsch, M., Laureys, S., Demertzi, A. (2012) Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front Psychol, 3:295.

Horovitz, S.G., Braun, A.R., Carr, W.S., Picchioni, D., Balkin, T.J., Fukunaga, M., Duyn, J.H. (2009) Decoupling of the brain′s default mode network during deep sleep. Proc Natl Acad Sci U S A, 106:11376-81.

Ikeda, H., Hayashi, M. (2008) Effect of sleep inertia on switch cost and arousal level immediately after awakening from normal nocturnal sleep. Sleep and Biological Rhythms, 6:120-125.

Ikeda, H., Hayashi, M. (2010) The effect of self-awakening from nocturnal sleep on sleep inertia. Biol Psychol, 83:15-9.

Ikeda, H., Kubo, T., Kuriyama, K., Takahashi, M. (2014) Self-awakening improves alertness in the morning and during the day after partial sleep deprivation. Journal of sleep research, 23:673-80.

Jewett, M.E., Wyatt, J.K., Ritz-De Cecco, A., Khalsa, S.B., Dijk, D.J., Czeisler, C.A. (1999) Time course of sleep inertia dissipation in human performance and alertness. Journal of sleep research, 8:1-8.

Kleitman, N. (1963) Sleep and wakefulness. Chicago,. University of Chicago Press. x, 552 p. p.

Larson-Prior, L.J., Power, J.D., Vincent, J.L., Nolan, T.S., Coalson, R.S., Zempel, J., Snyder, A.Z., Schlaggar, B.L., Raichle, M.E., Petersen, S.E. (2011) Modulation of the brain′s functional network architecture in the transition from wake to sleep. Prog Brain Res, 193:277-94.

Lee, T.-W., Northoff, G., Wu, Y.-T. (2014) Resting network is composed of more than one neural pattern: An fMRI study. Neuroscience, 274:198-208.

Medicine, A.A.o.S., Iber, C. (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine.

Menon, V., Uddin, L.Q. (2010) Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function, 214:655-667.

Motomura, Y., Kitamura, S., Oba, K., Terasawa, Y., Enomoto, M., Katayose, Y., Hida, A., Moriguchi, Y., Higuchi, S., Mishima, K. (2013) Sleep debt elicits negative emotional reaction through diminished amygdala-anterior cingulate functional connectivity. PLoS One, 8:e56578.

Picchioni, D., Duyn, J.H., Horovitz, S.G. (2013) Sleep and the functional connectome. NeuroImage, 80:387-96.

Prince, T.M., Wimmer, M., Choi, J., Havekes, R., Aton, S., Abel, T. (2014) Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory. Neurobiol Learn Mem, 109:122-30.

Rechtschaffen, A., Kales, A. (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects.

Ruggiero, J.S., Redeker, N.S., Fiedler, N., Avi-Itzhak, T., Fischetti, N. (2012) Sleep and psychomotor vigilance in female shiftworkers. Biological research for nursing, 14:225-35.

Samann, P.G., Wehrle, R., Hoehn, D., Spoormaker, V.I., Peters, H., Tully, C., Holsboer, F., Czisch, M. (2011) Development of the brain′s default mode network from wakefulness to slow wave sleep. Cereb Cortex, 21:2082-93.

Santhi, N., Groeger, J.A., Archer, S.N., Gimenez, M., Schlangen, L.J., Dijk, D.J. (2013) Morning sleep inertia in alertness and performance: effect of cognitive domain and white light conditions. PLoS One, 8:e79688.

Silva, E.J., Duffy, J.F. (2008) Sleep inertia varies with circadian phase and sleep stage in older adults. Behav Neurosci, 122:928-35.

Spoormaker, V.I., Schroter, M.S., Gleiser, P.M., Andrade, K.C., Dresler, M., Wehrle, R., Samann, P.G., Czisch, M. (2010) Development of a large-scale functional brain network during human non-rapid eye movement sleep. J Neurosci, 30:11379-87.

Tassi, P., Muzet, A. (2000) Sleep inertia. Sleep medicine reviews, 4:341-353.

Tononi, G., Cirelli, C. (2006) Sleep function and synaptic homeostasis. Sleep medicine reviews, 10:49-62.

Tsai, P.J., Chen, S.C., Hsu, C.Y., Wu, C.W., Wu, Y.C., Hung, C.S., Yang, A.C., Liu, P.Y., Biswal, B., Lin, C.P. (2014) Local awakening: regional reorganizations of brain oscillations after sleep. NeuroImage, 102 Pt 2:894-903.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15:273-89.

Van De Werken, M., Gimenez, M.C., De Vries, B., Beersma, D.G., Van Someren, E.J., Gordijn, M.C. (2010) Effects of artificial dawn on sleep inertia, skin temperature, and the awakening cortisol response. Journal of sleep research, 19:425-35.

Wertz, A.T., Ronda, J.M., Czeisler, C.A., Wright, K.P., Jr. (2006) Effects of sleep inertia on cognition. JAMA, 295:163-4.

Wu, C.W., Liu, P.Y., Tsai, P.J., Wu, Y.C., Hung, C.S., Tsai, Y.C., Cho, K.H., Biswal, B.B., Chen, C.J., Lin, C.P. (2012) Variations in connectivity in the sensorimotor and default-mode networks during the first nocturnal sleep cycle. Brain Connect, 2:177-90.

Zang, Y.F., He, Y., Zhu, C.Z., Cao, Q.J., Sui, M.Q., Liang, M., Tian, L.X., Jiang, T.Z., Wang, Y.F. (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev, 29:83-91.

Zou, Q.H., Zhu, C.Z., Yang, Y., Zuo, X.N., Long, X.Y., Cao, Q.J., Wang, Y.F., Zang, Y.F. (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods, 172:137-41.

指導教授 吳昌衛(Changwei W Wu) 審核日期 2015-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明