參考文獻 |
1. Baup, S., Ueber eine neue Pyrogen-Citronensäure, und über Benennung der Pyrogen-Säuren überhaupt. Annalen der Pharmacie, 1836. 19(1): p. 29-38.
2. Lin, Y.-H., Studies on itaconic acid production in Aspergillus terreus. 2004.
3. Klement, T. and J. Buchs, Itaconic acid--a biotechnological process in change. Bioresour Technol, 2013. 135: p. 422-31.
4. Kinoshita, K., Ueber eine neue Aspergillus-Art, Aspergillus itaconicus nov. spec. Shokubutsugaku Zasshi, 1931. 45(530): p. 45-60.
5. Okabe, M., et al., Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol, 2009. 84(4): p. 597-606.
6. Roehr, M. and C.P. Kubicek, Further Organic Acids, in Biotechnology. 2008, Wiley-VCH Verlag GmbH. p. 363-379.
7. Kobayashi, T. and I. Nakamura, Dynamics in Mycelial Concentration of Aspergillus terreus K 26 in Steady State of Continuous Culture. Journal of fermentation technology., 1966. 44(6): p. 264-274.
8. Willke, T. and K.D. Vorlop, Biotechnological production of itaconic acid. Applied Microbiology and Biotechnology, 2001. 56(3-4): p. 289-295.
9. Werpy, T.A., J.E. Holladay, and J.F. White, Top Value Added Chemicals From Biomass: I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas. 2004. p. Medium: ED; Size: PDFN.
10. Yahiro, K., et al., Breeding of Aspergillus terreus mutant TN-484 for itaconic acid production with high yield. Journal of Fermentation and Bioengineering, 1995. 79(5): p. 506-508.
11. Kautola, H., et al., Itaconic acid production by immobilized Aspergillus terreus from xylose and glucose. Biotechnology Letters, 1985. 7(3): p. 167-172.
12. Li, A., et al., A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol, 2011. 48(6): p. 602-11.
13. Kobayashi, T., Production of itaconic acid from wood waste. Process biochemistry, 1978. 13(5): p. 15-22.
14. Klement, T., et al., Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact, 2012. 11: p. 43.
15. Petruccioli, M., V. Pulci, and F. Federici, Itaconic acid production by Aspergillus terreus on raw starchy materials. Letters in Applied Microbiology, 1999. 28(4): p. 309-312.
16. Rocha, N.R.d.A.F., et al., Ethanol production from agroindustrial biomass using a crude enzyme complex produced by Aspergillus niger. Renewable Energy, 2013. 57: p. 432-435.
17. Sanchez, C., Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv, 2009. 27(2): p. 185-94.
18. Malcolm Brown Jr, R., I.M. Saxena, and K. Kudlicka, Cellulose biosynthesis in higher plants. Trends in Plant Science, 1996. 1(5): p. 149-156.
19. Taiz, L. and E. Zeiger, Cell walls: structure, biogenesis, and expansion, in Plant Physiology. 1998, Sinauer Associates: Sunderland, MA.
20. Comstock, M.J. and M.J. Comstock, Enzymatic Conversion of Biomass for Fuels Production, Copyright, 1994 Advisory Board, Foreword. 1994. 566: p. i-vi.
21. Duff, S.J.B. and W.D. Murray, Bioconversion of forest products industry waste cellulosics to fuel ethanol: A review. Bioresource Technology, 1996. 55(1): p. 1-33.
22. Mosier, N., et al., Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 2005. 96(6): p. 673-86.
23. Balat, M., Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 2011. 52(2): p. 858-875.
24. 施智雄, 利用鹼和Aspergillus niger處理稻稈以提升甲烷生產於厭氧共發酵系統, in 化學工程與材料工程學系. 2013, 國立中央大學: 桃園市. p. 108.
25. Sadhu, S. and T.K. Maiti, Cellulase production by bacteria: a review. British Microbiology Research Journal, 2013. 3(3): p. 235-258.
26. Bhat, M.K. and S. Bhat, Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances, 1997. 15(3–4): p. 583-620.
27. Wen, Z., W. Liao, and S. Chen, Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochemistry, 2005. 40(9): p. 3087-3094.
28. Chen, M., J. Zhao, and L. Xia, Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers, 2008. 71(3): p. 411-415.
29. Sukumaran, R.K., et al., Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 2009. 34(2): p. 421-424.
30. Bansal, N., et al., Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag, 2012. 32(7): p. 1341-6.
31. Waeonukul, R., et al., Efficient saccharification of ammonia soaked rice straw by combination of Clostridium thermocellum cellulosome and Thermoanaerobacter brockii beta-glucosidase. Bioresour Technol, 2012. 107: p. 352-7.
32. Schlochtermeier, A., et al., The gene encoding the cellulase (Avicelase) Cell from Streptomyces reticuli and analysis of protein domains. Molecular Microbiology, 1992. 6(23): p. 3611-3621.
33. Juhász, T., K. Kozma, and K. Réczey, Production of β-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technology and Biotechnology, 2003. 41(1): p. 49-53.
34. Alexander, M., Introduction to soil microbiology. Introduction to soil microbiology., 1977(Ed. 2).
35. Schinner, F. and W. von Mersi, Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biology and Biochemistry, 1990. 22(4): p. 511-515.
36. Li, C., et al., Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J Biotechnol, 2013. 168(4): p. 470-7.
37. 吳國芳 and 馮志堅, 植物學. 2000, 高等教育出版社.
38. 廖偉修, 探討光品質對於 Aspergillus terreus 生產衣康酸之影響, in 化學工程與材料工程學系. 2011, 國立中央大學: 桃園市. p. 1-75.
39. Dictionary of the Fungi. 9th ed, ed. P. Kirk, P. Cannon, and J. Stalpers. 2001: CAB International.
40. Shimi, I. and M. Nour El Dein, Biosynthesis of itaconic acid by aspergillus terreus. Archiv für Mikrobiologie, 1962. 44(2): p. 181-188.
41. Calam, C.T., A.E. Oxford, and H. Raistrick, Studies in the biochemistry of micro-organisms: Itaconic acid, a metabolic product of a strain of Aspergillus terreus Thom. Biochemical Journal, 1939. 33(9): p. 1488-1495.
42. Bentley, R. and C.P. Thiessen, Biosynthesis of itaconic acid in Aspergillus terreus. II. Early stages in glucose dissimilation and the role of citrate. J Biol Chem, 1957. 226(2): p. 689-701.
43. Bonnarme, P., et al., Itaconate biosynthesis in Aspergillus terreus. Journal of Bacteriology, 1995. 177(12): p. 3573-8.
44. Reese, E.T., History of the cellulase program at the U. S. Army Natick Development Center. Journal Name: Biotechnol. Bioeng. Symp.; (United States); Journal Volume: 6, 1976: p. Medium: X; Size: Pages: 9-20.
45. Ahamed, A. and P. Vermette, Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal, 2008. 40(3): p. 399-407.
46. Yahiro, K., et al., Efficient itaconic acid production from raw corn starch. Journal of Fermentation and Bioengineering, 1997. 84(4): p. 375-377.
47. Papagianni, M., F. Wayman, and M. Mattey, Fate and role of ammonium ions during fermentation of citric acid by Aspergillus niger. Appl Environ Microbiol, 2005. 71(11): p. 7178-86.
48. Haldenwang, L. and U. Behrens, Influence of phosphate concentration on the respiratory activity of Azotobacter vinelandii. Zeitschrift für allgemeine Mikrobiologie, 1983. 23(8): p. 491-494.
49. Riscaldati, E., et al., Effect of pH and stirring rate on itaconate production by Aspergillus terreus. Journal of Biotechnology, 2000. 83(3): p. 219-230.
50. Kobayashi, T., G. Van Dedem, and M. Mooyoung, Oxygen transfer into mycelial pellets. Biotechnology and Bioengineering, 1973. 15(1): p. 27-45.
51. Pfeifer, V.F., C. Vojnovich, and E.N. Heger, ITACONIC ACID BY FERMENTATION WITH ASPERGILLUS TERREUS. Industrial & Engineering Chemistry, 1952. 44(12): p. 2975-2980.
52. Gyamerah, M.H., Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Applied Microbiology and Biotechnology, 1995. 44(1-2): p. 20-26.
53. Roukas, T., Influence of impeller speed on citric acid production and selected enzyme activities of the TCA cycle. Journal of Industrial Microbiology, 1991. 7(3): p. 221-225.
54. He, Y.F., et al., Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy & Fuels, 2008. 22(4): p. 2775-2781.
55. 郭以謙, Trichoderma reesei與Aspergillus niger共醣化稻稈及Saccharomyces cerevisiae生產生質酒精之研究, in 化學工程與材料工程學系. 2014, 國立中央大學: 桃園市. p. 89.
56. Kataria, R. and S. Ghosh, Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresour Technol, 2011. 102(21): p. 9970-5.
57. 黃柏傑, 探討以Aspergillus niger分解稻桿及Saccharomyces cerevisiae生產生質酒精之研究, in 化學工程與材料工程學系. 2013, 國立中央大學: 桃園市.
58. Miller, G.L., Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. 1959.
59. GHOSE, T.K., Measurement of cellulase activities. 1987.
60. Selig, M., N. Weiss, and a.Y. Ji, Enzymatic Saccharification of Lignocellulosic Biomass. 2008, National Renewable Energy Laboratory.
61. Lai, L.S., C.S. Hung, and C.C. Lo, Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng, 2007. 104(1): p. 9-13.
62. Anderson, R.L. and W.J. Wolf, Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. Journal of nutrition, 1995. 125(3): p. 581S.
63. Hafez, Y., Nutrient composition of different varieties and strains of soybean. Nutrition reports international, 1983. 28(6): p. 1197-1206.
|