博碩士論文 102329017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:149 、訪客IP:18.118.0.93
姓名 林冠伯(Kuan-Bo Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 旋轉塗佈摻雜共擴散製程應用於N型雙面受光矽晶太陽能電池
(Co-diffusion by spin-on dopants for bifacial n-type silicon solar cells)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因為太陽能電池過去的高成本因素,沒有一個合適的方法,可以完全從太陽能資源代替石油或燃煤能量,然而,在最近幾年中,我們可以發現,太陽能電池的製造成本得到了顯著下降,生產能力成本有較大的大量增加其滿足直列行業需求,因此,我們期待著在太陽能和太陽能電池領域的美好的未來發展。
尤其對於N型單晶矽而言,因生產成本的下降,許多單位都預測了在2013年後整體在太陽能產業的比重會日益增加甚至在未來成為光伏工業的一項主流,所以對於N型單晶矽太陽能電池的開發成本與轉換效率的研究會日益劇增,本論文主要針對N型單晶雙面受光型太陽能電池進行製程上的改良。
對於一般以擴散製程製作的雙面受光太陽能電池而言,在形成電池射極 (Emitter) 與背表面電場 (Back surface field, BSF) 的過程都是藉由使矽晶圓在兩次的高溫下驅使外加載子高溫擴散進入矽晶格形成,在這過程中不免會對矽晶圓造成多次熱應力使矽晶圓品質下降的缺點,所以在本論文裡,我們藉由旋轉塗佈高溫共擴散法 (Co-diffusion by spin-on dopants) 以一次高溫擴散的方式形成這兩項對太陽能電池最為核心的部分,這樣不僅可以大大的降低電池製作成本,在電池製備的時間上也可以有所減少,大大的增加整體效益。
在我們初步的實驗結果中,我們發現經由共擴散製程的矽晶圓在高溫區的表面鈍化效應表現會比二次擴散製程來的好,而目前利用共擴散製程初步得到太陽能電池轉換效率 (η) = 11.4 %;開路電壓 (Voc ) = 591.6 mV;短路電流 (Jsc) = 33.6 mA/cm2;填充因子 (FF) = 62 %。
摘要(英) In conventional bifacial n-Si solar cells fabrication processing, raw Si wafers have to be annealed in high temperature furnace at least two times to form emitter and back surface field (BSF). However, these processing have many disadvantages and waste time in the industrial.
In this thesis, we used the co-diffusion by spin-on dopants processing to form the p+ emitter and n+ BSF in the ONE step for n-type Si which could reduce the annealing time and manufacturing cost in the industrial. The two structures were fabricated to diffuse in high temperature and characterized in SIMS profiles, effective lifetime, inverse saturation current density and surface recombination velocity (SRV). Finally, the structure in highly performance for surface passivation were fabricated in bifacial n-Si solar cells in order to improve and modify the conventional manufacturing method.
As our result showed, co-diffusion structure for barrier layer on phosphorous side had better surface passivation properties. This structure would be demonstrated in the bifacial n-Si solar cells for efficiency = 11.4 %, Voc = 591.6 mV, Jsc = 33.6 mA/cm2 and fill factor = 62 %.
關鍵字(中) ★ N型單晶矽
★ 雙面受光型太陽能電池
★ 轉塗佈高溫共擴散法
關鍵字(英) ★ bifacial n-Si solar cells
★ co-diffusion by spin-on dopants
論文目次 目錄
摘要 I
Abstract II
致謝 III
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1前言 1
1-2 研究背景 4
第二章 文獻回顧 7
2-1 概論 7
2-2 太陽光譜 9
2-3 光伏轉換器的分類 10
2-3-1 光伏轉換器的世代 10
2-3-2 矽基太陽能電池分類 11
2-3-3 矽晶太陽能電池結構 12
2-4 太陽能電池基礎物理 14
2-4-1 太陽能電池運作機制 14
2-4-2 太陽能電池基礎參數 14
2-5 複合理論 20
2-6 旋轉塗佈製程理論與回顧 23
2-6-1 固態擴散理論 23
2-6-2 表面鈍化效應 25
2-6-2-1 磷擴散的表面鈍化效應 26
2-6-2-2 硼擴散的表面鈍化效應 27
2-6-3 擴散製程文獻回顧 28
第三章 研究方法 30
3-1 背景與動機 30
3-2 擴散源溶液製備 34
3-3 基板粗糙化 34
3-4 二次離子質譜儀分析 35
3-5 表面鈍化效應分析 37
3-6 矽基太陽能電池開發 39
3-7 儀器分析 41
第四章 結果探討 43
4-1 基本雙面擴散分析 43
4-1-1 磷原子擴散分析 43
4-1-2 硼原子擴散分析 46
4-2 雙面阻擋擴散探討 50
4-2-1 雙面磷擴散探討 50
4-2-2 雙面硼擴散探討 52
4-2-3 雙面不同擴散探討 53
4-3 單側阻擋擴散探討 55
4-3-1交互擴散分析 55
4-3-1-1 覆蓋阻擋層一側SIMS縱深分析 55
4-3-1-2 無覆蓋一側SIMS縱深分析 56
4-3-2 磷側阻擋擴散探討 57
4-3-2-1 表面鈍化效應探討 57
4-3-2-2 逆向飽和電流探討 58
4-3-2-3 表面複合速率探討 59
4-3-3 硼側阻擋擴散探討 60
4-3-3-1 表面鈍化效應探討 60
4-3-3-2 逆向飽和電流探討 61
4-3-3-3 表面複合速率探討 62
4-4 矽晶太陽能電池開發 62
4-4-1 兩段擴散表面鈍化效應探討 63
4-4-2 擴散製程表面鈍化效應比較 63
4-4-3 太陽能電池電性分析 65
第五章 結論 67
參考文獻 68
參考文獻 [1] https://en.wikipedia.org/?title=Transistor
[2] https://en.wikipedia.org/wiki/Semiconductor_industry
[3] https://en.wikipedia.org/wiki/Moore%27s_law
[4] https://en.wikipedia.org/wiki/Silicon
[5] Pallab Bhattacharya, Semiconductor Optoelectronic Devices, second edition, Prentice-Hall, Inc., 1997
[6] 李雅明, 固態電子學, 全華科技, 1995
[7] Craig F. Bohren, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, Inc., 1983
[8] King-Ning Tu, Electronic Thin Film Science, Macmillan, Inc., 1992
[9] John P. Mckelvey, Solid State and Semiconductor Physics, 1971
[10] https://en.wikipedia.org/wiki/Sustainable_energy#Green_energy
[11] Paul Maycock, Bloomberg New Energy Finance, 2013
[12] S. Pizzini, "Towards solar grade silicon: Challenges and benefits for low cost photovoltaics", Solar Energy Materials & Solar Cells, 94, 1528-1533, (2010).
[13] Daniel Macdonald, "PHOSPHORUS GETTERING IN MULTICRYSTALLINE SILICON STUDIED BY NEUTRON ACTIVATION ANALYSIS", IEEE, 2, 0-7803-7471-1, (2002).
[14] M. Kerr and A. Cuevas, “General parameterization of Auger recombination in crystalline silicon”, Journal of Applied Physics, 91, 2473-2481 (2002).
[15] Muramatsu, S., et al., Effect of hydrogen radical annealing on SiN passive solar cells. Solar Energy Materials and Solar Cells., 65, 599-606 (2001).
[16] Lee, Y., et al., Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells. Nanoscale Research Letters, 7, 1-6 (2012).
[17] Dauwe, S., et al., “Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Progress in photovoltaics”, 10, 271-278, (2002).
[18] Salemi, S., et al., “The effect of defects and their passivation on the density of states of the 4H-silicon-carbide/silicon-dioxide interface”, Journal of Applied Physics (2013).
[19] Chang, L.S., P.L. Gendler, and J.H. Jou, “Thermal, mechanical and chemical effects in the degradation of the plasma-deposited alpha-rich passivation layer in a multilayer thin-film device. Journal of Materials Science”, 26, 1882-1890 (1999).
[20] Jang, J.H. and K.S. Lim, “Post hydrogen treatment effects of boron-doped a-SiC:H p-layer of a-Si:H solar cell using a mercury-sensitized photo-chemical vapor deposition method”, Japanese journal of applied physics part 1-regular papers short notes & review papers, 36, 6230-6236 (1997).
[21] Sepeai S. et al., “Surface passivation studies on n+pp+ bifacial solar cell. International Journal of Photoenergy”, 10, 1155-1162 (2012).
[22] J Del Alamo, J Van Meerbergen, F d′Hoore, J Nijs, “High-low junctions for solar cell applications. Solid-State Electronics”, 24, 533-538 (1980).
[23] Michael P. Godlewski, Cosmo R. Baraona, Henry W, “Low-high junction theory applied to solar cells”, 10th Photovoltaic Specialists′ Conf., IEEE, 29, 131-150, (1990).
[24] http://pveducation.org/pvcdrom/properties-of-sunlight/atmospheric-effects
[25] PV News, Paul Maycock, 1997.
[26] European Photovoltaic Industry Association, 2010.
[27] European Photovoltaic Industry Association, 2014.
[28] Park S, Bae S, Kim H, Kim S, Do Kim Y, Park H, Kim S, Tark SJ, Son CS, Kim D, “Effects of controllable process factors on Al rear surface bumps in Si solar cells”, Current Applied Physics, 12, 17-22 (2012).
[29] Zhao J, Wang A, Green MA, “High efficiency PERL silicon solar cells on FZ and MCZ substrates”, Technical digest of the 11th International Photovoltaic Science and Engineering Conference, 65, 429-435 (2001).
[29] Wang A, Zhao J, Green MA, “24% efficient silicon solar cells, Applied physics letters”, 2, 1477-1480 (1994).
[30] Blakers AW, Wang A, Milne AM, Zhao J, Green MA., “High efficient silicon solar cells”, Applied Physics Letters, 6, 427-484 (1990).
[31] S. Gatz, K. Bothe, J. Muel¬ler, T. Dull¬we¬ber, and R. Bren¬del, “Ana¬ly¬sis of local Al-doped back sur¬face fields for high effi¬ci¬ency screen-prin¬ted solar cells”, Energy Pro¬ce¬dia, 8, 318–323 (2011).
[32] S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Prentice -Hall, ed. 1.0, 2001.
[22] D. A. Neamen, Semiconductor Physics and devices: basic principles, McGraw-hill, 2003.
[33] H. Hoppe, N. S. Sariciftci, Organic solar cells, Journal of materials research, 19, 1924-1945 (2004).
[34] B. Fischer, “Loss analysis of crystalline silicon solar cells using photo-conductance and quantum efficiency measurements”, PhD Thesis, University of Konstanz, 2003.
[35] Schimpe, R., “Theory of reflection at the facet of a semiconductor-laser”, Aeu-Archiv Fur elektronik und ubert ragung stec hnik-International Journal of Electronics and Communications, 46, 80-85 (1992).
[36] M. wolf, H. Rauschenbach, Advanced energy conversion, 3, 455-479 (1963).
[37] A. B. Sproul, M. A. Green, and A. W. Stephens, “Accurate determination of minority carrier-and lattice scattering-mobility in silicon from photo-conductance decay”, J. Appl. Phys., 72, 4161-4171 (1992).
[38] http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency
[39] W. Shockley and W. Read, “Statistics of the recombinations of holes and electrons”, Physical Review, 87, 835–842 (1952).
[40] Arnab Das, "Development of high-efficiency boron diffused silicon solar cells", PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering, 2012
[41] A. G. Aberle, Crystalline silicon solar cells: advanced surface passivation and analysis, University of New South Wales, Sydney NSW 2052, 1999.
[42] J. P. Colinge and C. A. Colinge, Physics of semiconductor devices, Kluwer academic publishers, 2002.
[43] S. M. Sze, and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, Inc., Hoboken, NJ, USA. 2006.
[33] M. A. Green, Solar cells: Operating principles, technology, and system applications, Englewood Cliffs, NJ, Prentice-hall, Inc., 1982.
[44] Choi, S.J., et al., “The electrical properties and hydrogen passivation effect in monocrystalline silicon solar cell with various pre-deposition times in doping process”, Renewable Energy, 54, 96-100 (2013).
[45] A. B. Sproul, M. A. Green, and A. W. Stephens, “Accurate determination of minority carrier-and lattice scattering-mobility in silicon from photo-conductance decay”, J. Appl. Phys., 72, 4161-4171 (1992).
[46] M. S. Tyagi and R. V. Overstraeten, “Minority carrier recombination in heavily doped silicon”, Solid-St. Electron., 26, 577-597 (1983).
[47] M. J. Kerr and A. Cuevas, “General parameterization of Auger recombination in crystalline silicon”, J. Appl. Phys., 91, 97-104 (2002).
[48] W. Shockley and W. Read, “Statistics of the Recombination of holes and electrons”, Phys. Rev., 87, 835-842 (1952).
[49] I. Martín, a M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla et al., “Crystalline silicon surface passivation with amorphous SiCx:H films deposited by plasma-enhanced chemical-vapor deposition”, Journal of Applied Physics, 98, 114912-114921 (2005).
[50] M. Kerr and A. Cuevas, “General parameterization of auger recombination in crystalline silicon”, Journal of Applied Physics, 91, 2473-2481 (2002).
[51] S. Dauwe, “Low-temperature surface passivation of crystalline Silicon and its application to the rear side of solar cells”, harderberg (2004).
[52] Hyomin Park et al, “Effect of the phosphorus gettering on si heterojunction solar cells“, International Journal of Photoenergy, 7 (2012).
[53] Gajendra Singh et al, “Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field“, The Royal Society of Chemistry, 4, 4225–4229 (2014).
[54] Peter J, "The influence of diffusion-Induced dislocations on high efficiency silicon solar cells", IEEE Transactions on electron devices, 53, 3 (2006).
[55] Arnab Das, "Development of high-efficiency boron diffused silicon solar cells", PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering (2012).
[56] F.Gaisean, "Analysis of the generation of the misfit dislocations during the boron prediffusion in silicon", Proc. SPIE Conf. Process, Equipment, Mater. Control Integr. Circuit Manufact. IV, 281-285 (1998).
[57] Aberle AG, Altermatt PP, Heiser G, Robinson SJ, Wang A, Zhao J, Krumbein U, Green MA. “Limiting loss mechanisms in 23% efficient silicon solar cells”, Journal of Applied Physics, 77, 3491-3507 (1995).
[58] B. Vermang, H. Goverde, A. Uruena, A. Lorenz, E. Cornagliotti, A. Rothschild, J. John, J. Poortmans and R. Mertens, “Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si Solar Cells”, Solar Energy Materials and Solar Cells, 101, 204-209 (2012).
[59] 胡致維”旋轉塗佈摻雜溶液之擴散製程探討及應用於製備太陽能電池”,國立中央大學材料科學與工程研究所碩士論文,民國103年。
[60] V. D. Mihailetchi, Proc. 25th Eur. Photovoltaic Sci. Eng. Conf., 1446–1448 (2010).
[61] Gajendra Singh, The Royal Society of Chemistry, 4, 4225–4229 (2014).
[62] LIBAL, J. et al., Proceedings of the 22th European Photovoltaic Solar Energy Conference, 1382-1386, (2007).
[63] J. Y. Lee and S. W. Glunz, Proc. 19th EU-PVSEC, 998-1001 (2004).
[64] G. Bueno, Proc. 20th EU-PVSEC, 1458-1461 (2005).
[65] Arnab Das, "Development of high-efficiency boron diffused silicon solar cells", PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering (2012).
[66] B. Bazer-Bachi etal., “Higher emitter quality by reducing inactive phosphorus”, Solar Energy Materials & Solar Cells, 105, 137-141 (2012).
[67] Toshio Joge et al, “Low-Temperature Boron Gettering for Improve the Carrier Lifetime in Fe-Contaminated Bifacial Silicon Cells with n+pp+ Back-Surface-Field Structure”, Jpn. J. Appl. Phys., 42, 5397-5404 (2003).
[68] YichaoWu et al, “Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping”, Applied Physics Letters, 106, 102105 (2015).
[69] N. Ganagona, L. Vines, E. V. Monakhov, and B. G. Svensson, “Transformation of divacancies to divacancy-oxygen pairs in p-type Czochralski-silicon mechanism of divacancy diffusion”, J. Appl. Phys., 115, 034514 (2014).
[70] Chao Gao, Yunhao Lu, Peng Dong, Jun Yi, Xiangyang Ma, and Deren Yang, “Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding”, Applied Physics Letters, 104, 032102 (2014).
[71] Fa-Jun Ma et al, “Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon”, J. Appl. Phys., 116, 184103 (2014).
[72] Ahmed Zarroug, Lotfi Derbali, Hatem Ezzaouia, “The impact of thermal treatment on gettering efficiency in silicon solar cell”, Materials Science in Semiconductor Processing, 30, 451-455 (2015).
[73] Chanseok Kim et al, “Properties of boron-rich layer formed by boron diffusion in n-type silicon”, Thin Solid Film, 564, 253-257 (2014).
[74] Peter J. Cousins and Jeffrey E. Cotter, “Influence of diffusion-induced dislocations on high efficiency silicon solar cells”, IEEE TRANSACTIONS ON ELECTRON DEVICES, 53, 3 (2006).
[75] X. J. Ning, “Distribution of residual stresses in boron doped p+ silicon film”, J. Electrochem. Soc., 143, 10 (1996).
[76] Jonas Schön et al., “Main defect reactions behind phosphorus diffusion gettering of iron”, J. Appl. Phys., 116, 244503 (2014).
[77] Ana Peral, José Manuel Míguez, Ramón Ordás, Carlos del Cañizo, “Lifetime improvement after phosphorous diffusion gettering on upgraded metallurgical grade silicon”, Solar Energy Materials & Solar Cells, 130, 686-689 (2014).
[78] http://pveducation.org/pvcdrom/characterisation/bulk-lifetime
指導教授 陳一塵(I-Chen Chen) 審核日期 2015-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明