參考文獻 |
[1] https://en.wikipedia.org/?title=Transistor
[2] https://en.wikipedia.org/wiki/Semiconductor_industry
[3] https://en.wikipedia.org/wiki/Moore%27s_law
[4] https://en.wikipedia.org/wiki/Silicon
[5] Pallab Bhattacharya, Semiconductor Optoelectronic Devices, second edition, Prentice-Hall, Inc., 1997
[6] 李雅明, 固態電子學, 全華科技, 1995
[7] Craig F. Bohren, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, Inc., 1983
[8] King-Ning Tu, Electronic Thin Film Science, Macmillan, Inc., 1992
[9] John P. Mckelvey, Solid State and Semiconductor Physics, 1971
[10] https://en.wikipedia.org/wiki/Sustainable_energy#Green_energy
[11] Paul Maycock, Bloomberg New Energy Finance, 2013
[12] S. Pizzini, "Towards solar grade silicon: Challenges and benefits for low cost photovoltaics", Solar Energy Materials & Solar Cells, 94, 1528-1533, (2010).
[13] Daniel Macdonald, "PHOSPHORUS GETTERING IN MULTICRYSTALLINE SILICON STUDIED BY NEUTRON ACTIVATION ANALYSIS", IEEE, 2, 0-7803-7471-1, (2002).
[14] M. Kerr and A. Cuevas, “General parameterization of Auger recombination in crystalline silicon”, Journal of Applied Physics, 91, 2473-2481 (2002).
[15] Muramatsu, S., et al., Effect of hydrogen radical annealing on SiN passive solar cells. Solar Energy Materials and Solar Cells., 65, 599-606 (2001).
[16] Lee, Y., et al., Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells. Nanoscale Research Letters, 7, 1-6 (2012).
[17] Dauwe, S., et al., “Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Progress in photovoltaics”, 10, 271-278, (2002).
[18] Salemi, S., et al., “The effect of defects and their passivation on the density of states of the 4H-silicon-carbide/silicon-dioxide interface”, Journal of Applied Physics (2013).
[19] Chang, L.S., P.L. Gendler, and J.H. Jou, “Thermal, mechanical and chemical effects in the degradation of the plasma-deposited alpha-rich passivation layer in a multilayer thin-film device. Journal of Materials Science”, 26, 1882-1890 (1999).
[20] Jang, J.H. and K.S. Lim, “Post hydrogen treatment effects of boron-doped a-SiC:H p-layer of a-Si:H solar cell using a mercury-sensitized photo-chemical vapor deposition method”, Japanese journal of applied physics part 1-regular papers short notes & review papers, 36, 6230-6236 (1997).
[21] Sepeai S. et al., “Surface passivation studies on n+pp+ bifacial solar cell. International Journal of Photoenergy”, 10, 1155-1162 (2012).
[22] J Del Alamo, J Van Meerbergen, F d′Hoore, J Nijs, “High-low junctions for solar cell applications. Solid-State Electronics”, 24, 533-538 (1980).
[23] Michael P. Godlewski, Cosmo R. Baraona, Henry W, “Low-high junction theory applied to solar cells”, 10th Photovoltaic Specialists′ Conf., IEEE, 29, 131-150, (1990).
[24] http://pveducation.org/pvcdrom/properties-of-sunlight/atmospheric-effects
[25] PV News, Paul Maycock, 1997.
[26] European Photovoltaic Industry Association, 2010.
[27] European Photovoltaic Industry Association, 2014.
[28] Park S, Bae S, Kim H, Kim S, Do Kim Y, Park H, Kim S, Tark SJ, Son CS, Kim D, “Effects of controllable process factors on Al rear surface bumps in Si solar cells”, Current Applied Physics, 12, 17-22 (2012).
[29] Zhao J, Wang A, Green MA, “High efficiency PERL silicon solar cells on FZ and MCZ substrates”, Technical digest of the 11th International Photovoltaic Science and Engineering Conference, 65, 429-435 (2001).
[29] Wang A, Zhao J, Green MA, “24% efficient silicon solar cells, Applied physics letters”, 2, 1477-1480 (1994).
[30] Blakers AW, Wang A, Milne AM, Zhao J, Green MA., “High efficient silicon solar cells”, Applied Physics Letters, 6, 427-484 (1990).
[31] S. Gatz, K. Bothe, J. Muel¬ler, T. Dull¬we¬ber, and R. Bren¬del, “Ana¬ly¬sis of local Al-doped back sur¬face fields for high effi¬ci¬ency screen-prin¬ted solar cells”, Energy Pro¬ce¬dia, 8, 318–323 (2011).
[32] S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Prentice -Hall, ed. 1.0, 2001.
[22] D. A. Neamen, Semiconductor Physics and devices: basic principles, McGraw-hill, 2003.
[33] H. Hoppe, N. S. Sariciftci, Organic solar cells, Journal of materials research, 19, 1924-1945 (2004).
[34] B. Fischer, “Loss analysis of crystalline silicon solar cells using photo-conductance and quantum efficiency measurements”, PhD Thesis, University of Konstanz, 2003.
[35] Schimpe, R., “Theory of reflection at the facet of a semiconductor-laser”, Aeu-Archiv Fur elektronik und ubert ragung stec hnik-International Journal of Electronics and Communications, 46, 80-85 (1992).
[36] M. wolf, H. Rauschenbach, Advanced energy conversion, 3, 455-479 (1963).
[37] A. B. Sproul, M. A. Green, and A. W. Stephens, “Accurate determination of minority carrier-and lattice scattering-mobility in silicon from photo-conductance decay”, J. Appl. Phys., 72, 4161-4171 (1992).
[38] http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency
[39] W. Shockley and W. Read, “Statistics of the recombinations of holes and electrons”, Physical Review, 87, 835–842 (1952).
[40] Arnab Das, "Development of high-efficiency boron diffused silicon solar cells", PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering, 2012
[41] A. G. Aberle, Crystalline silicon solar cells: advanced surface passivation and analysis, University of New South Wales, Sydney NSW 2052, 1999.
[42] J. P. Colinge and C. A. Colinge, Physics of semiconductor devices, Kluwer academic publishers, 2002.
[43] S. M. Sze, and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, Inc., Hoboken, NJ, USA. 2006.
[33] M. A. Green, Solar cells: Operating principles, technology, and system applications, Englewood Cliffs, NJ, Prentice-hall, Inc., 1982.
[44] Choi, S.J., et al., “The electrical properties and hydrogen passivation effect in monocrystalline silicon solar cell with various pre-deposition times in doping process”, Renewable Energy, 54, 96-100 (2013).
[45] A. B. Sproul, M. A. Green, and A. W. Stephens, “Accurate determination of minority carrier-and lattice scattering-mobility in silicon from photo-conductance decay”, J. Appl. Phys., 72, 4161-4171 (1992).
[46] M. S. Tyagi and R. V. Overstraeten, “Minority carrier recombination in heavily doped silicon”, Solid-St. Electron., 26, 577-597 (1983).
[47] M. J. Kerr and A. Cuevas, “General parameterization of Auger recombination in crystalline silicon”, J. Appl. Phys., 91, 97-104 (2002).
[48] W. Shockley and W. Read, “Statistics of the Recombination of holes and electrons”, Phys. Rev., 87, 835-842 (1952).
[49] I. Martín, a M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla et al., “Crystalline silicon surface passivation with amorphous SiCx:H films deposited by plasma-enhanced chemical-vapor deposition”, Journal of Applied Physics, 98, 114912-114921 (2005).
[50] M. Kerr and A. Cuevas, “General parameterization of auger recombination in crystalline silicon”, Journal of Applied Physics, 91, 2473-2481 (2002).
[51] S. Dauwe, “Low-temperature surface passivation of crystalline Silicon and its application to the rear side of solar cells”, harderberg (2004).
[52] Hyomin Park et al, “Effect of the phosphorus gettering on si heterojunction solar cells“, International Journal of Photoenergy, 7 (2012).
[53] Gajendra Singh et al, “Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field“, The Royal Society of Chemistry, 4, 4225–4229 (2014).
[54] Peter J, "The influence of diffusion-Induced dislocations on high efficiency silicon solar cells", IEEE Transactions on electron devices, 53, 3 (2006).
[55] Arnab Das, "Development of high-efficiency boron diffused silicon solar cells", PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering (2012).
[56] F.Gaisean, "Analysis of the generation of the misfit dislocations during the boron prediffusion in silicon", Proc. SPIE Conf. Process, Equipment, Mater. Control Integr. Circuit Manufact. IV, 281-285 (1998).
[57] Aberle AG, Altermatt PP, Heiser G, Robinson SJ, Wang A, Zhao J, Krumbein U, Green MA. “Limiting loss mechanisms in 23% efficient silicon solar cells”, Journal of Applied Physics, 77, 3491-3507 (1995).
[58] B. Vermang, H. Goverde, A. Uruena, A. Lorenz, E. Cornagliotti, A. Rothschild, J. John, J. Poortmans and R. Mertens, “Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si Solar Cells”, Solar Energy Materials and Solar Cells, 101, 204-209 (2012).
[59] 胡致維”旋轉塗佈摻雜溶液之擴散製程探討及應用於製備太陽能電池”,國立中央大學材料科學與工程研究所碩士論文,民國103年。
[60] V. D. Mihailetchi, Proc. 25th Eur. Photovoltaic Sci. Eng. Conf., 1446–1448 (2010).
[61] Gajendra Singh, The Royal Society of Chemistry, 4, 4225–4229 (2014).
[62] LIBAL, J. et al., Proceedings of the 22th European Photovoltaic Solar Energy Conference, 1382-1386, (2007).
[63] J. Y. Lee and S. W. Glunz, Proc. 19th EU-PVSEC, 998-1001 (2004).
[64] G. Bueno, Proc. 20th EU-PVSEC, 1458-1461 (2005).
[65] Arnab Das, "Development of high-efficiency boron diffused silicon solar cells", PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering (2012).
[66] B. Bazer-Bachi etal., “Higher emitter quality by reducing inactive phosphorus”, Solar Energy Materials & Solar Cells, 105, 137-141 (2012).
[67] Toshio Joge et al, “Low-Temperature Boron Gettering for Improve the Carrier Lifetime in Fe-Contaminated Bifacial Silicon Cells with n+pp+ Back-Surface-Field Structure”, Jpn. J. Appl. Phys., 42, 5397-5404 (2003).
[68] YichaoWu et al, “Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping”, Applied Physics Letters, 106, 102105 (2015).
[69] N. Ganagona, L. Vines, E. V. Monakhov, and B. G. Svensson, “Transformation of divacancies to divacancy-oxygen pairs in p-type Czochralski-silicon mechanism of divacancy diffusion”, J. Appl. Phys., 115, 034514 (2014).
[70] Chao Gao, Yunhao Lu, Peng Dong, Jun Yi, Xiangyang Ma, and Deren Yang, “Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding”, Applied Physics Letters, 104, 032102 (2014).
[71] Fa-Jun Ma et al, “Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon”, J. Appl. Phys., 116, 184103 (2014).
[72] Ahmed Zarroug, Lotfi Derbali, Hatem Ezzaouia, “The impact of thermal treatment on gettering efficiency in silicon solar cell”, Materials Science in Semiconductor Processing, 30, 451-455 (2015).
[73] Chanseok Kim et al, “Properties of boron-rich layer formed by boron diffusion in n-type silicon”, Thin Solid Film, 564, 253-257 (2014).
[74] Peter J. Cousins and Jeffrey E. Cotter, “Influence of diffusion-induced dislocations on high efficiency silicon solar cells”, IEEE TRANSACTIONS ON ELECTRON DEVICES, 53, 3 (2006).
[75] X. J. Ning, “Distribution of residual stresses in boron doped p+ silicon film”, J. Electrochem. Soc., 143, 10 (1996).
[76] Jonas Schön et al., “Main defect reactions behind phosphorus diffusion gettering of iron”, J. Appl. Phys., 116, 244503 (2014).
[77] Ana Peral, José Manuel Míguez, Ramón Ordás, Carlos del Cañizo, “Lifetime improvement after phosphorous diffusion gettering on upgraded metallurgical grade silicon”, Solar Energy Materials & Solar Cells, 130, 686-689 (2014).
[78] http://pveducation.org/pvcdrom/characterisation/bulk-lifetime
|