博碩士論文 101622013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.147.27.210
姓名 孫元晟(Yuan-Cheng Sun)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用接收函數法分析遠震寬頻資料推估宜蘭平原地殼厚度
(Determination of Moho depths in Ilan plain by receiver function analysis)
相關論文
★ 利用單位海嘯模擬方法建立台灣近海海嘯警報系統★ 由西太平洋地區T波觀測來探討其成因與遠震參數之關係
★ 利用表面波頻散分析探討馬尼拉海溝側向速度變化★ 利用短週期臨時地震觀測網分析菲律賓明多洛島地震分佈
★ 利用噪訊成像反演宜蘭平原上部地殼 三維高解析度S波速度構造★ 菲律賓民都洛島西北地震地體和上部地函速度構造
★ 利用TCDP井下地震儀陣列分析車籠埔斷層帶之非均向性★ 利用匹配定位法探討 2017 Batangas 地震序列之完整活動度
★ 藉由剪力波分離參數探究菲律賓民多洛島之上部地函非均向性★ 以雙差分定位法重新定位2017 Batangas地震序列
★ 應用隨機滑移模型 於臺灣地區之機率式海嘯危害度分析★ 台灣東北部地下三維高解析度P波速度構造與其地體構造意涵
★ 印度尼西亞蘇拉威西島地震構造★ 利用地震與測地資料聯合逆推2022年九月關山地震與池上地震的破裂過程
★ 2021南投深部地震的構造意義★ 以二維地震波模擬探討臺灣東北部雙重P波之觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 宜蘭平原位於台灣島的東北部,西北接雪山山脈,南接中央山脈,地理位置上處於沖繩海槽的西南端。沖繩海槽本身是菲律賓海板塊向西北隱沒至歐亞板塊之下形成之 琉球島弧,在其後方張裂歐亞大陸板塊邊緣造成之弧後盆地。
在本研究中,我們在2013年11月至宜蘭平原設置了10部臨時寬頻地震儀,用來研究分析此宜蘭平原地區的莫荷不連續面分佈。所以我們將得到的遠震地資料選取進行接收函數法處理,以對應之轉換波相包括Ps轉型波、PpPms及PsPms+PpSms兩個複反射波與直達P波到時差來推估莫荷不連續面深度。我們使用時間域迭代解迴旋法運算得到接收函數,其中時間域迭代解迴旋法是利用垂直向與水平向波形進行交相關運算得到對應之脈衝函數,再以此脈衝函數與垂直向波形進行迴旋 (convolution),直到對應之徑向波形與觀測之徑向波形誤差小於一定值,脈衝函數總和即為所求之接收函數結果,再以此結果進行H-κ疊加法運算而得對應之莫荷不連續面深度 (H) 及Vp/Vs比 (κ)。
接下來我們以H-κ疊加法有無得到結果可以大致將宜蘭平原分為南北區域。南區5個測站 (SSE、DJE、LLK、SAJ、MSE) 由西北、東北、西南象限入射遠震事件之接收函數結果皆缺乏清晰之轉換波相,以轉換點檢驗後發現這些遠震事件的轉換點多位於雪山山脈、中央山脈靠近內陸及宜蘭平原底下,導致H-κ疊加法得不到最佳莫荷面深度及κ值。北區5個測站 (SJY、DTE、NCH、NCE、DHE) 四個象限的入射波轉換點與南區5個測站非東南象限入射的轉換位置有一致的結果,所以也無法得到最佳莫荷面深度及κ值。
H-κ結果只有南區5個測站由東南象限入射遠震事件之接收函數疊加得之。我們認為能夠得到結果的主因是由於東南象限入射的轉換位置多位在測站的東南方,顯示中央山脈底下近海處或靠近琉球島弧底下的位置所轉換的入射波之接收函數有較清楚的轉換波相,故能得到最佳之H-κ結果。莫荷不連續面深度介於24至31公里之間,其中以測站DJE轉換點位於蘇澳附近之莫荷面深度最深。
北區5個測站之接收函數雖然大致上能觀測到Ps轉型波訊號,但PpPms及PsPms+PpSms兩個複反射波訊號較難從接收函數中觀察到,所以無法以H-κ疊加的最大值得到最佳之莫荷不連續面 (H) 及κ值。但如果已知κ值,可從Ps轉型波的到時求出對應的莫荷不連續面深度。故我們將南區5個測站的κ值取平均,以推得一代表宜蘭平原北區5個測站轉換點位置的代表κ值,再以此平均κ值分別帶入宜蘭平原北區的5個測站的H-κ結果,找出各測站入射波平均轉換點的莫荷面深度。得到的莫荷不連續面深度介於27至29公里之間。此種做法雖然有一定的誤差存在,但是在資料有限制的情況下,所能得到的最合理推測。
摘要(英) The Ilan Plain, abutting the Hsueshan range to the northwest and the Central range to the south, is a triangular alluvial delta in northeast Taiwan most likely representing the southwest end of the Okinawa Trough, a back-arc basin due to the subduction of the Philippine Sea Plate underneath the Eurasia Plate. In this study, we deployed an array of ten broadband stations since Nov. 2013. The array is roughly distributed evenly on the Ilan Plain near mountain hills, which is designed to investigate the spatial variations of Moho depths.
We conduct receiver function analysis on data of teleseismic events, mostly from the southeast quadrant. The P converted to S phase (Ps) and PpPms, PsPms+PpSms multiple reflection phases at the Moho are examined. The analysis is done by time-domain iterative deconvolution, which progressively subtracted from the radial-component seismogram with the convolution of vertical-component seismogram and updated receiver function.
Results show that stations with or without starkly contrasts of H-κ stacking can roughly be divided into those in the south and those in the north Ilan Plain. For the five stations in the south Ilan Plain (SSE, DJE, LLK, SAJ, MSE), teleseismic events from the northwest, northeast and southwest quadrants are mostly unable to resolve receiver functions with clear Ps and/or multiple reflection later phases (PpPms, PsPms+PpSms). Having examined the convergent points of those events, we conclude that Moho discontinuities beneath the Hsueshan range, the Central range inland side, and the Ilan Plain are not sharp enough to generate all phases necessary for the H-κ analysis. For the five stations in the north Ilan Plain (SJY, DTE, NCH, NCE, DHE), the convergent points of events from the four quadrants are all fallen among the aforementioned regions and, for similar reasons, unresolvable of H-κ stacking.
The only scenario with starkly contrasts of H-κ stacking to be determined is those teleseismic events to the southeast quadrant of the five stations in the south Ilan Plain. They contribute the most abundant observations with derived receiver functions consistently exhibiting arrivals of Ps and PpPms, PsPms+PpSms phases. As a result, H-κ results are able to individually determine the Moho depths convergent beneath southeast of the Ilan Plain with depths ranging from 24 to 31km and the deepest one occurred near Suao. We conclude that the Moho discontinuities to the southeast of the Ilan Plain (the Central Range shore side, offshore Suao) are sharp enough to generate all phases necessary for the H-κ analysis.
Using the average κ as determined from the five stations in south Ilan Plain, we manage to estimate the Moho depths for the five stations in the north Ilan Plain and the results range from 27 to 29 km. Although the results are subject to certain level of uncertainty, it is the optimal approach under conditions of limited data.
關鍵字(中) ★ 宜蘭平原
★ 莫荷深度
★ 接收函數
關鍵字(英) ★ Ilan plain
★ Moho depth
★ receiver function
論文目次 目錄
中文摘要 i
Abstract iii
誌謝 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1研究動機與目的 1
1.2本論文內容 2
第二章 研究區域概況 5
2.1區域地體構造及地質環境 5
2.2前人文獻回顧 5
2.2.1 宜蘭平原地區之GPS相關研究 5
2.2.2 南沖繩海槽之構造研究 6
第三章 研究方法與原理 13
3.1接收函數法 13
3.2 H-κ疊加法 14
3.3 時間域迭代解迴旋法 18
第四章 資料與分析 22
4.1 接收函數分析 26
4.1.1 接收函數之地震資料處理與篩選 26
4.1.2 時間域迭代解迴旋之穩定度測試及參數測試 32
4.1.3接收函數結果之篩選 38
4.2 H-κ疊加法分析 41
第五章 研究結果與討論 44
5.1 宜蘭平原南區 44
5.2 宜蘭平原北區 50
5.3 以南區測站之平均κ值推求北區測站對應莫荷不連續面深度 56
5.4 綜合討論 58
第六章 結論 61
參考文獻 62
附錄A 南區各測站以四象限後方位角各別疊加之徑向接收函數 65
附錄B 北區各測站以四象限後方位角各別疊加之徑向接收函數 69
附錄C 轉換點計算 73
附錄D 南區以後方位角排列之接收函數與對應之轉換點示意圖 74
附錄E 北區以後方位角排列之接收函數與對應之轉換點示意圖 76
附錄F 遠震地震清單 78
附錄G 各測站使用之地震列表 85
參考文獻 Angelier, J., J. C. Lee, H. T. Chu, J. C. Hu, C. Y. Lu, Y. C. Chan, T. J. Lin, Y. Font, B. Deffontaines, Y. B. Tsai (2001). The Chichi earthquake, 1999, and its role in the Taiwan orogen, Earth Plant. Sci., 333, 5-21.
Angelier, J., T.Y. Chang, J. C. Hu, C. P. Chang, L. Siame, J.C. Lee, B. Deffontaines, H.T. Chu, C.Y. Lu (2008). Does extrusion occurs at both tips of the Taiwan collision belt ? Insights from active deformation studies in the Ilan Plain and Pingtung Plain regions, Tectonophysics, 466, 356-376.
Bath, M. and R. Stefansson (1966). SP conversion at the base of the crust, Annals of Geophys., 19(2), 119-130.
Hou, C. S., J. C. Hu, K. E. Ching, Y. G. Chen, C. L. Chen, L. W. Cheng, C. L. Tang, S. H. Huang, C. H. Lo (2009). The crustal deformation of the Ilan Plain acted as a westernmost extension of the Okinawa Trough, Tectonophysics, 466, 344–355.
Hsu, Y. J., S. B. Yu, M. Simons, L. C. Kuo, and H. Y. Chen (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479, 4-18.
Hu, J. C., J. Angelier, J. C. Lee, H. T. Chu, D. Byrne (1996). Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modeling, Tectonophysics, 255(3-4), 243-268.
Hu, J. C., S. B. Yu, H. T. Chu, J. Angelier (2002). Transition tectonics of northern Taiwan induced by convergence and trench retreat, Geol. Soc. Am. Special Paper 358, 149-162.
Ku, C. Y. and S. K. Hsu (2009). The Neo-Tectonic Structure of the Southwestern Tip of the Okinawa Trough, Terr. Atoms. Ocean. Sci., Vol. 20, No.5, 749-759.
Langston, C.A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res., 84(B9), 4749-4762.
Lee, J. C., J. Angelier, and H. T. Chu (1997). Polyphase history and kinematics of a complex major fault zone in the northern Taiwan mountain belt: The Lishan Fault, Tectonophysics, 274, 97-115.
Lai, K. Y., Y. G. Chen, Y. M. Wu, J. P. Avouac, Y. T. Kuo, Y. Wang, C. H. Chang and K. C. Lin (2009). The 2005 Ilan earthquake doublet and seismic crisis in northeastern Taiwan: evidence for dyke intrusion associated with on-land propagation of the Okinawa Trough, Geophys. J. Int., 179, 678-686.
Ligorria, J. P., and C. J. Ammon (1999). Iterative deconvolution and receiver-function estimation, Bull. Seismol. Soc. Am., 89(5), 1395-1400.
Lin, J. Y., J. Sibuet, C. S. Lee, S. K. Hsu, F. Klingelhoefer, Y. Auffret, P. Pelleau, J. Crozon, C. H. Lin (2009). Microseismicity and faulting in the southwestern Okinawa Trough, Tectonophysics, 466, 268–280.
Liu, C. C. (1995). The Ilan plain and the southwestward extending Okinawa Trough, J. Geol. Soc. China 38, 229-242.
Louis S. Teng (1996), Extensional collapse of the northern Taiwan mountain belt, Geology, 24, 949-952.
Phinney, R. A. (1964). Structure of the Earth’s crust from spectral behavior of long-period body waves, J. Geophys. Res., 69(14), 2997-3017.
Sibuet, J. C., B. Deffontaines, S. K. Hsu, Thareau, N. Thareau., J. L. Formal, C. S. Liu, and ACT party (1998). Okinawa Trough backarc basin: Early tectonic and magmatic evolution, J. Geophys. Res., 103(B12), 30245-30267.
Yu, S. B., H. Y. Chen, and L. C. Kuo (1997). Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59.
Zhu, L., and H. Kanamori (2000). Moho depth variation in southern California from teleseismic receiver functions, J. Geophys. Res., 105(B2), 2969-2980.
邱詠恬,2008。利用GPS觀測資料探討宜蘭平原現金地殼變形,國立台灣大學碩士論
文,共101頁。
邱詠恬,2008。由2002-2006年之GPS觀測資料探討宜蘭平原之地殼變形,經濟部中央
地質調查所特刊,第二十號,第111-124 頁。
康竹君、張翠玉、李建成、陳柔妃,2008。南沖繩海槽之最西端及梨山斷層最北端:蘭
陽平原的構造活動特性,西太平洋地質科學,第8卷,第17-42頁。
鄧屬予,1997。台灣第四紀大地構造,經濟部中央地質調查所特刊,第18號,第1-24
頁。
趙紹錚、周銘瑋、徐瑩潔,2009。宜蘭地區地質概論與土層特徵,國立宜蘭大學工程學
刊,第5期,1-16頁。
指導教授 陳伯飛(Po-Fei Chen) 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明