博碩士論文 102226069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.16.47.14
姓名 張佑誠(You-cheng Jhang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 於平面波導上製作次波長光柵耦合結構之研究
(The research of fabricating sub-wavelength grating structure on planar waveguide)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究主要以雷射雙光束干涉微影法,製作波導耦合元件於玻璃基板上,目的在於縮小元件體積與增強光耦合效率,並且對於光柵週期、薄膜厚度、不同光柵結構影響耦合角度與耦合效率及薄膜粗糙度影響傳遞損耗作探討,文中所使用的模擬方法為有限時域差分法(Finite Difference Time Domain, FDTD),模擬結果顯示當雷射光源為532 nm時,光柵結構週期在300 nm,五氧化二鉭(Ta2O5)的波導厚度在100 nm時的耦合效率最高而耦合角度也較小。

在實驗製程上,利用雙電子槍蒸鍍系統外加離子源助鍍系統鍍製二氧化矽(SiO2)與五氧化二鉭(Ta2O5)作為底部包覆層(bottom cladding)與波導層(guiding layer),並利用干涉微影技術(Interference lithography)在波導層上製作300 nm的光柵。由於光阻的光柵已經有初步的耦合效果,所以會對其量測光耦合效率;此外由於波導層的折射率係數與薄膜表面粗糙度,影響光耦合效率與傳遞損耗尤為重要,本文中也會探討雙電子槍蒸鍍系統環境參數,如何影響上述兩種因子,試圖找出最佳的參數提昇元件的品質與效率,在製程最後本文提出了中空形光柵的概念與製程方法,根據FDTD模擬的結果顯示其可有效地提高光耦合效率。

最後在量測上,除了觀察到光耦合進波導外,也成功量測到元件耦合進波導的效率與耦合角度,經計算後光阻光柵的波導耦合元件在TE波的耦合效率最高為3.63%;而中空形光柵的波導耦合元件在TE波的耦合效率可達16.14%,傳遞損耗為 5.1 dB/cm,耦合角度為6.5度,TM波的耦合效率為4.93%,傳遞損耗為6.0 dB/cm,耦合角度為 -7.0度,本研究所使用的製程方法,在製作上簡單方便、節省成本並可量產,未來可以應用於生醫感測元件、光檢測器、光通訊元件。
摘要(英) In this study, a laser interference lithography is used to fabricate the sub-wavelength grating as a coupling device on a glass substrate. The purpose of this research is to reduce the device size and to enhance the coupling efficiency. The coupling device was designed using the finite-difference time-domain (FDTD) method. The grating period, depth, fill factor, film thickness and different grating structure were analyzed to enhance the coupling efficiency and reduce the coupling angle. According to the simulation results, when the working wavelength, the grating period and the Ta2O5 film are 532 nm,300 nm and 100 nm, there are optimum coupling efficiency and relatively smaller coupling angle than large period.

We used dual E-beam evaporation system with ion-beam-assisted deposition system to fabricate the bottom cladding (SiO2) and the guiding layer (Ta2O5) on glass. Then laser interference lithography was used to fabricate the grating with the period of 300 nm as a guiding layer. In this part, the best process parameters was studied to deposit the film and the precise exposure time and development time was also developed to fabricate the grating with good quality. Finally, the air hole grating was proposed to enhance the coupling efficiency. According to the FDTD simulation results, the structure can improve the coupling efficiency more effectively.

After the device fabrication, the photonic properties were measured. The results show the TE wave coupling efficiency of the photoresist grating coupling device is 3.63% and the coupling angle is 2.5 degree. And the TE wave coupling efficiency of the air hole grating device is 16.14%, the coupling angle is 6.5 degree and propagation loss is 5.1 dB/cm. The TM wave coupling efficiency is 4.93%, the coupling angle is -7 degree and propagation loss is 6.0 dB/cm.
關鍵字(中) ★ 干涉微影
★ 次波長光柵
★ 平面波導
★ 耦合器
關鍵字(英) ★ Interference lithography
★ Sub-wavelength grating
★ Planar waveguide
★ Coupler
論文目次 目錄
摘要 I
Abstract II
致謝 IV
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 薄膜波導與應用 3
1.2.2 干涉技術的發展[10] 4
1.2.3 生物感測器的發展 4
1.3 研究動機 5
1.4 本論文章節編排 6
第二章 基本理論 8
2-1 波導原理[26] 8
2-2 光柵耦合原理[27] 11
2-3 干涉原理[10] 13
2-4 有限時域差分法(Finite-Difference Time-Domain;FDTD) 15
第三章 元件設計與模擬 21
3-1 元件設計介紹 21
3-2 不同材料之耦合角度與耦合效率分析 25
3-3 不同週期與光柵深度之耦合角度與耦合效率分析 27
3-4 光柵線寬比與耦合效率相關性分析 30
3-5 厚度與傳遞損耗及耦合角度相關性分析 31
3-6 不同光源之耦合角度與耦合效率分析 33
3-7 不同結構之之耦合角度與耦合效率分析 35
3-7-1 方形光柵結構 35
3-7-2 雙凹形光柵結構 36
3-7-3 三角形光柵結構 39
3-7-4 三角中空形光柵結構 41
第四章 元件製作與量測 45
4-1元件製作流程介紹 45
4-2實驗設備與量測設備介紹 48
4-2-1 製程設備 48
4-2-2量測儀器 54
4-3 薄膜表面粗糙度與折射率分析 57
4-3-1 不同溫度之粗糙度與折射率比較 59
4-3-2 不同蒸鍍速率之粗糙度與折射率比較 61
4-3-3 不同腔體壓力之粗糙度與折射率比較 63
4-3-4 有無離子源之粗糙度與折射率比較 65
4-3-5 不同機台之膜層折射率與粗糙度比較 68
4-3-6 結果討論 71
4-4 干涉微影光柵製作與分析 73
4-4-1 光阻厚度與均勻性量測 73
4-4-2 角度與週期的相關性測試 77
4-4-3 曝光時間與顯影時間測試與分析 80
4-4-4 抗反射膜設計 87
4-5 三角中空光柵的波導耦合元件製作方法與結果 90
4-6 元件量測 95
4-6-1實驗計算流程介紹 96
4-6-2 光阻光柵波導耦合元件的耦合效率與角度量測結果與分析 98
4-6-3 三角中空光柵波導耦合元件的耦合效率與角度量測結果與分析 100
4-6-4 兩種計算方法差異 115
第五章 結論與未來展望 116
參考文獻 119

參考文獻 1.S.E. Miller, Integrated Optics: An Introduction. Bell System Technical Journal, 1969. 48(7): p. 2059-2069.
2.陳彥良, 平面波導光柵耦合生物感測器, in 機械工程學系. 2010, 中正大學.
3.R. Shubert and J.H. Harris, Optical Surface Waves on Thin Films and Their Application to Integrated Data Processors. Microwave Theory and Techniques, IEEE Transactions on, 1968. 16(12): p. 1048-1054.
4.P.K. Tien , R. Ulrich, and R.J. Martin, Modes Of Propagating Light WavesS In Thin Deposited Semiconductor Films. Applied Physics Letters, 1969. 14(9): p. 291-294.
5.M.L. Dakss, L. Kuhn, P.F. Heidrich, and B.A. Scott, Grating Coupler For Efficient Excitation Of Optical Guided Waves In Thin Films. Applied Physics Letters, 1970. 16(12): p. 523-525.
6.R. Ulrich, Efficiency of optical-grating coupler . Journal of the Optical Society of America, 1973. 63(11): p. 1419-1431.
7.D.H. Hensler, J.D. Cuthbert, R.J. Martin, and P.K. Tien, Optical Propagation in Sheet and Pattern Generated Films of Ta2O5. Applied Optics, 1971. 10(5): p. 1037-1042.
8.P.K. Tien, G. Smolinsky, and R.J. Martin, Thin Organosilicon Films for Integrated Optics. Applied Optics, 1972. 11(3): p. 637-642.
9.H. Kogelnik, and C.V. Shank, Stimulated emission in a periodic structure. Applied Physics Letters, 1971. 18(4): p. 152-154.
10.黃家麒, 四道光干涉微影之曝光與顯影參數對微結構輪廓及深度之探討, in 機械工程研究所. 2006, 中央大學.
11.M.C. Hutley, Coherent Photofabrication. Optical Engineering, 1976. 15(3): p. 153190-153190-.
12.W.N. Willie, H. Chi-Shain, and A. Yariv, Holographic interference lithography for integrated optics. Electron Devices, IEEE Transactions on, 1978. 25(10): p. 1193-1200.
13.J.A. Hoffnagle, W.D. Hinsberg, M. Sanchez, and F.A. Houle, Liquid immersion deep-ultraviolet interferometric lithography. Journal of Vacuum Science & Technology B, 1999. 17(6): p. 3306-3309.
14.H.H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B.H. Sohn, X.M. Yang, and P. Nealey, Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography. Applied Physics Letters, 1999. 75(15): p. 2328-2330.
15.P.T. Konkola, C.G. Chen, R.K. Heilmann, and M.L. Schattenburg, Beam steering system and spatial filtering applied to interference lithography. Journal of Vacuum Science & Technology B, 2000. 18(6): p. 3282-3286.
16.R.K. Heilmann, P.T. Konkola, C.G. Chen, G.S. Pati, and M.L. Schattenburg, Digital heterodyne interference fringe control system. Journal of Vacuum Science & Technology B, 2001. 19(6): p. 2342-2346.
17.M.L. Schattenburg, C.G. Chen, R.K. Heilmann, P.T. Konkola, and G.S. Pati. Progress toward a general grating patterning technology using phase-locked scanning beams. 2002.
18.H.H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S.O. Kim, and P.F. Nealey, Sub-50 nm period patterns with EUV interference lithography. Microelectronic Engineering, 2003. 67–68(0): p. 56-62.
19.H.H. Solak,and C. David, Patterning of circular structure arrays with interference lithography. Journal of Vacuum Science & Technology B, 2003. 21(6): p. 2883-2887.
20.V.N. Golovkina, P.F. Nealey, F. Cerrina, J.W. Taylor, H.H. Solak, C. David, and J. Gobrecht, Exploring the ultimate resolution of positive-tone chemically amplified resists: 26 nm dense lines using extreme ultraviolet interference lithography. Journal of Vacuum Science & Technology B, 2004. 22(1): p. 99-103.
21.W. Lukosz and K. Tiefenthaler, Directional switching in planar waveguides effected by adsorption-desorption processes. 2nd Eur. Conf. Integrated Optics,Institute of Electrical Engineers,Florence,onference Publication No. 227,London (1983),1983: p. 152–155.
22.R.E. Kunz,J.P. Edlinger, B.J. Curtis, M.T. Gale, L.U. Kempen, H. Rudigier, and H. Schuetz. Grating couplers in tapered waveguides for integrated optical sensing. 1994.
23.R.E. Kunz and J. Dübendorfer, Miniature integrated-optical wavelength analyzer chip. Optics Letters, 1995. 20(22): p. 2300-2302.
24.M. Wiki , H. Gao , M. Juvet1, and R.E. Kunz1, Compact integrated optical sensor system. Biosensors and Bioelectronics, 2001. 16: p. 37-45(9).
25.S. Grego, J.R. McDaniel, and B.R. Stoner, Wavelength interrogation of grating-based optical biosensors in the input coupler configuration. Sensors and Actuators B: Chemical, 2008. 131(2): p. 347-355.
26.林聖富, Application of Aptasensor by Using Guided Mode Resonance for Thrombin Detection, in 光電工程與科學系. 2009, 中央大學. p. 17-27.
27.K. Cottier,Advanced Label-free Biochemical Sensors Based on Integrated optical waveguide Grating, in Insititut of Microtechnique. 2004, Neuchatel.
28.K.S. Yee, Numerical solution of initial boundary value problems involving Maxwall′s equation in isotropic media. IEEE Transactions Antennas and Propagation, 1996. 14: p. 302-307.
29.B.S. Ahluwalia, A.Z. Subramanian, O.G. Hellso, N.M.B. Perney, N.P. Sessions, and J.S. Wilkinson, Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles. Photonics Technology Letters, IEEE, 2009. 21(19): p. 1408-1410.
30.唐謙仁, Analysis of Ta2O5-TiO2 and Ta2O5-SiO2 composite films preparedby ion-beam sputtering deposition in 國立中央大學光電科學研究所. 2007. p. 2-3.
31.M. J. Chuang and K.Y. Hsieh, High-Temperature Wet Chemical Etching of Ta205 in NaOH-Based Solutions for Fabricating Antiresonant Reflecting Optical Waveguides. J. Electrochem. Soc., 1998. 145,No. 3.
32.林正軒, 三維表面電漿元件光電轉換特性之研究, in 光電科學與工程學系. 2014, 中央大學.
33.黃文雄, 製程參數對薄膜應力影響之研究, in 光電科學所. 2001, 中央大學.
34.施晨翔, 利用廣波域光譜擷取即時反射係數軌跡監控並鍍製窄帶濾光片之研究, in 光電科學與工程學系. 2013, 中央大學.
35.李坤憲, 濺鍍薄膜之光學常數與界面應力, in 光電科學與工程學系. 2011, 中央大學.
36.丁勝懋, 光電工程. 1996, 中國電機出版社.
37.Kimmon, IK3452R-F Wavelength : 325nm Power : 45mW Kimmon.
38.J.C. Manifacier, J. Gasiot, and J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. Journal of Physics E: Scientific Instruments, 1976. 9(11): p. 1002.
39.李正中, 薄膜光學與鍍膜技術. 2002, 藝軒圖書.
40.S. G. YOON, KIM H. K. , KIM M. J., LEE H. M., and Y.D. H., Effect of substrate temperature on surface roughness and optical properties of Ta 2 O 5 using ion-beam sputtering. Thin Solid Films, 2005. 475(1): p. 239-242.
41.SHIPLEY, s1800 series Data Sheet. SHIPLEY.
42.R. Murillo, H.A.v. Wolferen, L. Abelmann, and J.C. Lodder, Fabrication of patterned magnetic nanodots by laser interference lithography. Microelectron. Eng., 2005. 78-79: p. 260-265.
43.N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, Design, fabrication, structural and optical characterization of thin Si3N4 waveguides. IEEE J. Lightwave Technol, 2004. 2: p. 1734.
44.N. Pendam and C. Vardhani, Compact Low Loss Design of SOI 1x2 Y-Branch Optical Power Splitter with S-Bend Waveguide and Study on the Variation of Transmitted Power with Various Waveguide Parameters. 2014.
45.陳柏良, 結合光柵、平面波導與金屬奈米粒子之生物感測器研究與應用, in 機械工程研究所. 2007, 中正大學.
46.K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, Loss reduction of photonic crystal waveguide fabricated by the autocloning technology. Electronics and Communications in Japan (Part II: Electronics), 2005. 88(11): p. 10-20.

指導教授 陳昇暉 審核日期 2015-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明