博碩士論文 102329018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.137.170.76
姓名 李承陽(Cheng-yang Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
(Solvothermal Synthesis of Sb2S3-C-graphene composite as Anodes for Sodium-ion Batteries)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極
★ 電解質添加劑對鋅二次電池陽極電化學性質的影響★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析
★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響
★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究★ 高濃度電解質於鋰電池知應用研究
★ 熱解法製備硬碳材料應用於鈉離子電池負極★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗以溶劑熱法製備三硫化二銻(Sb2S3)粉體,粉體為微米棒結構的聚集體,其直徑約為200~300 nm及長度約為3~5 μm的斜方晶系。後續將Sb2S3同時添加有機碳源-葡萄糖及碳材-石墨烯能夠有效提升電化學性質表現。數據顯示Sb2S3及同時添加葡萄糖和石墨烯的複合材料在20 mAg-1低速電流密度下可逆電容值為439 mAhg-1及605 mAhg-1;另一方面在100 mAg-1的定電流下,反覆充放電50圈後,可提供18%及43%的循環維持率,表示同時添加葡萄糖和石墨烯作為複合材料不僅可以緩和鈉離子嵌入及嵌出過程中所造成的體積膨脹,並藉由石墨烯增加粒子與粒子之間的導電率以優化在高速下的電化學性能,使其提供優良的循環穩定性。
後續研究進一步探討PC及EC/DEC(50/50 v/v)兩種有機電解液並加入FEC添加劑測試對電性的影響。另一方面也選用離子液體模擬室溫和高溫下對電化學性質的影響,在20 mAg-1低速電流密度下可逆電容值各為588 mAhg-1、734 mAhg-1;在100 mAg-1的定電流下各為207 mAhg-1、279 mAhg-1,反覆充放電50圈後,可提供55%及62%的循環維持率,表示高溫有助於降低離子液體黏滯度,提升離子遷移率。最後探討PVDF及Na CMC兩種黏著劑,由反覆充放電50圈後,可提供57%及70%的循環維持率,表示Na CMC具有良好的伸縮彈性,能夠有效抑制充放電時的體積膨脹變化。

摘要(英) In recent years, low-cost rechargeable batteries become more crucial for the development and application of large-scale energy storage system. Up to now, Li-ion battery is one of major energy storage devices, but it’s limited to the cost and resources. Recently, Na-ion battery has become one of the most promising energy storage system and considered to be a candidate device for the next generation .
In this study, Sb2S3 nanorods were solvothermally synthesized with/without glucose (carbon coating) and graphene as anode for sodium-ion battery. At a constant current of 20 mAg-1, pure Sb2S3 nanorods as anode exhibited a reversible capacity of 439 mAhg-1. On the other hand, the reversible capacity increased to 621 mAhg-1 while Sb2S3 nanorods as anode with glucose and graphene addition. Further studies on Ionic Liquid Electrolytes at different temperature for sodium-ion batteries, While at room temperature and high temperature , At a constant current of 100 mAg-1 after 50 cycles, show cycle retention are 55% and 62% .Finally, studies on different binder about PVDF and Na CMC, At a constant current of 100 mAg-1 after 30 cycles, show cycle retention are 57% and 70%.
In summary, as compare to pure Sb2S3, the capacity and cycle-life can be improved in the glucose-coated Sb2S3 which decorated on graphene as anode for Na-ion battery.Ionic Liquid Electrolytes can provide higher thermal stability than Organic Liquid Electrolytes and use binder with Na CMC can decrease volume change ,the reason is attribute to good elasticity.

關鍵字(中) ★ 鈉離子電池
★ 負極材料
★ 石墨烯
★ 三硫化二銻
關鍵字(英)
論文目次 摘要 .................................................................................................................... I
Abstract .............................................................................................................. II
致謝 .................................................................................................................. III
總目錄 ............................................................................................................... V
圖目錄 .............................................................................................................. XI
表目錄 ........................................................................................................... XVII
第一章 緒論 ...................................................................................................... 1
1-1 研究動機 ................................................................................................. 1
第二章研究背景與文獻回顧 ............................................................................ 3
2- 1 大型儲能系統的概述 ................................................................................. 3
2-2 電池的種類 ................................................................................................ 6
2-3 金屬離子電池機制 ..................................................................................... 8
2-3-1 鋰離子二次電池發展及基本原理 .................................................. 11
2-3-2 鈉離子二次電池發展及基本原理 .................................................. 13
2-4 鈉離子二次電池負極材料介紹 ................................................................ 17
2-5 硫化銻負極材料........................................................................................ 22
VI
2-6 電解液介紹 ............................................................................................... 26
2-6-1 添加劑-氟代碳酸乙烯酯(FEC)....................................................... 27
2-7 黏著劑介紹 ............................................................................................... 31
2-8 石墨烯概論 ............................................................................................... 33
2-9 奈米碳管 ................................................................................................... 35
2-10 溶劑熱法 ................................................................................................. 36
第三章 實驗方法與步驟 ................................................................................ 38
3-1 實驗藥品與器材........................................................................................ 38
3-1-1 實驗藥品 .......................................................................................... 38
3-1-2 實驗儀器 ......................................................................................... 39
3-2 實驗流程與步驟........................................................................................ 40
3-2-1 第一部分 製備原材 ....................................................................... 40
3-2-2 第二部分 製備出非晶質碳包覆的Sb2S3 複合材料 ....................... 40
3-2-3 第三部分 製備出具Sb2S3-Medium Glu-wt%Gra、Sb2S3-Medium
Glu-wt%CNT 複合材料 ............................................................................ 41
3-2-4 第四部份 製備不同合成時間之Sb2S3-Medium Glu-5%Gra 複合材
料 ............................................................................................................... 41
VII
3-2-5 第五部分 製備不同有機電解質在室溫下測試 .............................. 42
3-2-6 第六部分 製備有機電解液與離子液體在不同溫度下測試 .......... 42
3-2-7 第七部分 使用不同的黏著劑製備電極材料 ................................ 42
3-3 材料鑑定分析 .......................................................................................... 43
3-3-1 場發射式電子掃描顯微鏡(Field Emission Scanning Electron
Microscope, FE-SEM) ............................................................................... 43
3-3-2 能量散佈光譜儀(Energy Dispersive Spectrum, EDS) ..................... 43
3-3-3 穿透式電子顯微鏡(Transmission electron microscope,TEM) ......... 43
3-3-4 X 光粉末繞射儀(X-ray Diffraction, XRD) ...................................... 43
3-3-5 X 光粉末繞射儀分析其電極之結構變化(Ex-situ X-ray Diffraction)
................................................................................................................... 43
3-3-6 熱重分析儀 (Thermogravimetric analyzer,TGA) ............................ 44
3-3-7 拉曼光譜儀(Raman Spectrometer) ................................................... 44
3-4 材料電化學實驗步驟 ................................................................................ 45
3-4-1 電極製備 .......................................................................................... 45
3-4-2 鈕扣電池製備 .................................................................................. 45
3-4-3 循環伏安法 (cyclic voltammetry,CV) .......................................... 46
3-4-4 計時電位法 (chronopotentimetry,CP) .......................................... 46
VIII
3-4-5 交流阻抗 (electrochemical impedance spectroscopy,EIS) ............ 46
第四章 結果與討論 ........................................................................................ 48
4-1 添加不同碳源 ........................................................................................... 48
4-1-1 粉末之結構分析 .............................................................................. 48
4-1-2 熱重分析儀分析 .............................................................................. 48
4-1-3 掃描式電子顯微鏡形貌分析 ........................................................... 49
4-1-4 穿透式電子顯微鏡形貌分析 ........................................................... 50
4-1-5 拉曼光譜圖分析 .............................................................................. 51
4-1-6 電化學特性測試 .............................................................................. 51
4-2 添加不同碳材及比例 ................................................................................ 64
4-2-1 添加不同石墨烯及奈米碳管比例於Sb2S3-Medium Glu 之結構分析
................................................................................................................... 64
4-2-2 熱重分析儀分析 .............................................................................. 64
4-2-3 掃描式電子顯微鏡形貌分析 ........................................................... 65
4-2-4 穿透式電子顯微鏡形貌分析 ........................................................... 65
4-2-5 循環伏安法 ...................................................................................... 65
4-2-6 X 光粉末繞射儀分析其電極之結構變化 ....................................... 67
IX
4-2-7 電化學特性測試 .............................................................................. 68
4-2-8 交流阻抗分析 .................................................................................. 69
4-3 以Sb2S3-Medium Glu-5%Gra 為製備基準於不同合成反應時間 ........... 82
4-3-1 製備時間不同之結構分析 ............................................................... 82
4-3-2 熱重分析儀分析 .............................................................................. 82
4-3-3 掃描式電子顯微鏡形貌分析 ........................................................... 83
4-3-4 電化學特性測試 .............................................................................. 83
4-4 有機電解質對電性表現分析 .................................................................... 90
4-4-1 循環伏安法 ...................................................................................... 90
4-4-2 電化學特性測試 .............................................................................. 91
4-4-3 交流阻抗分析 .................................................................................. 92
4-5 離子液體與有機電解質之室溫與高溫電化學分析 ................................. 98
4-5-1 熱重分析儀分析 .............................................................................. 98
4-5-2 電化學特性測試 .............................................................................. 98
4-5-3 掃描式電子顯微鏡分析 .................................................................. 99
4-6 有機系黏著劑與水系黏著劑對電性表現分析 ....................................... 105
4-6-1 電化學特性測試 ............................................................................ 105
X
第五章 結論 ................................................................................................. 109
參考文獻 ....................................................................................................... 110
附錄 ............................................................................................................... 118



參考文獻 1. Midilli, A. and I. Dincer, Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. International Journal of Hydrogen Energy, 2008. 33(16): p. 4209-4222.
2. Ahmed, N.A., M. Miyatake, and A.K. Al-Othman, Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems. Energy Conversion and Management, 2008. 49(10): p. 2711-2719.
3. Chourabi, H., et al., Understanding Smart Cities: An Integrative Framework. 2012: p. 2289-2297.
4. Kundu, D., et al., The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angewandte Chemie International Edition, 2015. 54(11): p. 3431-3448.
5. Kim, Y., et al., High-Capacity Anode Materials for Sodium-Ion Batteries. Chemistry - A European Journal, 2014. 20(38): p. 11980-11992.
6. Barker, J., M.Y. Saidi, and J.L. Swoyer, A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO[sub 4]F. Electrochemical and Solid-State Letters, 2003. 6(1): p. A1.
7. Alcántara, R., et al., Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries. Electrochemical and Solid-State Letters, 2005. 8(4): p. A222.
8. Stevens, D.A. and J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. Journal of the Electrochemical Society, 2000. 147(4): p. 1271-1273.
9. Suresh Babu, R. and M. Pyo, Hard Carbon and Carbon Nanotube Composites for the Improvement of Low-Voltage Performance in Na Ion Batteries. Journal of the Electrochemical Society, 2014. 161(6): p. A1045-A1050.
10. Yu, D.Y.W., et al., High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nature Communications, 2013. 4.
11. Whittingham, M.S., Materials challenges facing electrical energy storage. Mrs Bulletin, 2008. 33(4): p. 411-419.
12. Cho, J., S. Jeong, and Y. Kim, Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, 2015. 48: p. 84-101.
13. R. Ko¨tz, M.C., Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 2483–2498.
14. Brodd, M.W.a.R.J., What are batteries, fuel cells, and supercapacitors. Chemical Reviews. Chemical Reviews, 2004. 104: p. 4245-4269.
15. Recknagel, S., H. Radant, and R. Kohlmeyer, Survey of mercury, cadmium and lead content of household batteries. Waste Management, 2014. 34(1): p. 156-161.
16. Miranda, D., C.M. Costa, and S. Lanceros-Mendez, Lithium ion rechargeable batteries: State of the art and future needs of microscopic theoretical models and simulations. Journal of Electroanalytical Chemistry, 2015. 739: p. 97-110.
17. Milne, A.D. and C.A. Brousseau, Effects of battery type and age on performance of rechargeable laryngoscopes. Journal of Anesthesia, 2013. 27(5): p. 781-784.
18. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials, 2010. 22(3): p. 587-603.
19. Manthiram, A., Materials Challenges and Opportunities of Lithium Ion Batteries (vol 2, pg 176, 2011). Journal of Physical Chemistry Letters, 2011. 2(5): p. 373-373.
20. Yuan, L.-X., et al., Development and challenges of LiFePO4cathode material for lithium-ion batteries. Energy Environ. Sci., 2011. 4(2): p. 269-284.
21. Aurbach, D., The Application of Atomic Force Microscopy for the Study of Li Deposition Processes. Journal of The Electrochemical Society, 1996. 143(11): p. 3525.
22. Whittingham, M.S., History, Evolution, and Future Status of Energy Storage. Proceedings of the Ieee, 2012. 100: p. 1518-1534.
23. Johnson, B.A. and R.E. White, Characterization of commercially available lithium-ion batteries. Journal of Power Sources, 1998. 70(1): p. 48-54.
24. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
25. X. Yuan, H.L., J, Zhang, Lithium-Ion Batteries: Advanced Materials and Technologies. Taylor & Francis, 2011.
26. Scrosati, B. and J. Garche, Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010. 195(9): p. 2419-2430.
27. M. Yoshio, R.J.B., A. Kozawa, Lithium-Ion Batteries: Science and Technologies. Springer-Verlag, 2009.
28. Chen, J., C. Buhrmester, and J.R. Dahn, Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2005. 8(1): p. A59.
29. Arora, P., Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries. Journal of The Electrochemical Society, 1998. 145(10): p. 3647.
30. Kim, S.-W., et al., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Advanced Energy Materials, 2012. 2(7): p. 710-721.
31. Pan, H., Y.-S. Hu, and L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 2013. 6(8): p. 2338.
32. Veronica Palomares, e.a., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science, 2012. 5: p. 5884-5901.
33. Palomares, V., et al., Update on Na-based battery materials. A growing research path. Energy & Environmental Science, 2013. 6(8): p. 2312-2337.
34. Palacín, M.R., Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews, 2009. 38(9): p. 2565.
35. Slater, M.D., et al., Sodium-Ion Batteries. Advanced Functional Materials, 2013. 23(8): p. 947-958.
36. Doeff, M.M., et al., ELECTROCHEMICAL INSERTION OF SODIUM INTO CARBON. Journal of the Electrochemical Society, 1993. 140(12): p. L169-L170.
37. Alcantara, R., J.M.J. Mateos, and J.L. Tirado, Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000 degrees C. Journal of the Electrochemical Society, 2002. 149(2): p. A201-A205.
38. Zhecheva, E., et al., EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries. Carbon, 2002. 40(13): p. 2301-2306.
39. Stevens, D.A. and J.R. Dahn, The Mechanisms of Lithium and Sodium Insertion in Carbon Materials. Journal of The Electrochemical Society, 2001. 148(8): p. A803.
40. Biarritz and France, Abstract 228, The International Meeting on Lithium Batteries,. 2006: p. 18–23.
41. http://panasonic.co.jp/corp/news/official.data/data.dir/jn091225-1/jn091225-1.html. June 28, 2011.
42. Yabuuchi, N., et al., Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface-Stabilization Mechanism in Aprotic Solvent. ChemElectroChem, 2014. 1(3): p. 580-589.
43. Zhu, Y., et al., High rate capability and superior cycle stability of a flower-like Sb2S3anode for high-capacity sodium ion batteries. Nanoscale, 2015. 7(7): p. 3309-3315.
44. Kim, I.T., E. Allcorn, and A. Manthiram, High-performance FeSb–TiC–C nanocomposite anodes for sodium-ion batteries. Physical Chemistry Chemical Physics, 2014. 16(25): p. 12884.
45. Nithya, C. and S. Gopukumar, rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling. Journal of Materials Chemistry A, 2014. 2(27): p. 10516.
46. Cabana, J., et al., Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials, 2010. 22(35): p. E170-E192.
47. Li, J., et al., Impact of Rare Earth Additions on Transition Metal Oxides as Negative Electrodes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2008. 155(12): p. A975.
48. Taberna, P.L., et al., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials, 2006. 5(7): p. 567-573.
49. Du, Y., et al., A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat Commun, 2012. 3: p. 1177.
50. Ko, Y.N., et al., Preparation of Yolk-Shell and Filled Co9S8 Microspheres and Comparison of their Electrochemical Properties. Chemistry-an Asian Journal, 2014. 9(2): p. 572-576.
51. Ni, S., X. Yang, and T. Li, Fabrication of a porous NiS/Ni nanostructured electrodevia a dry thermal sulfuration method and its application in a lithium ion battery. Journal of Materials Chemistry, 2012. 22(6): p. 2395-2397.
52. Ruan, H., et al., Synthesis of porous NiS thin films on Ni foam substrate via an electrodeposition route and its application in lithium-ion batteries. Journal of Alloys and Compounds, 2014. 588: p. 357-360.
53. Zakaznova-Herzog, V.P., et al., High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction. Surface Science, 2006. 600(2): p. 348-356.
54. Yu, D.Y.W., et al., High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun, 2013. 4.
55. Ponrouch, A., et al., Non-aqueous electrolytes for sodium-ion batteries. Journal of Materials Chemistry A, 2015. 3(1): p. 22-42.
56. Freunberger, S.A., et al., The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angewandte Chemie International Edition, 2011. 50(37): p. 8609-8613.
57. Ohta, A., et al., RELATIONSHIP BETWEEN CARBONACEOUS MATERIALS AND ELECTROLYTE IN SECONDARY LITHIUM-ION BATTERIES. Journal of Power Sources, 1995. 54(1): p. 6-10.
58. Kamath, G., et al., In Silico Based Rank-Order Determination and Experiments on Nonaqueous Electrolytes for Sodium Ion Battery Applications. The Journal of Physical Chemistry C, 2014. 118(25): p. 13406-13416.
59. Komaba, S., et al., Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries. Advanced Functional Materials, 2011. 21(20): p. 3859-3867.
60. Shiddiky, M.J.A. and A.A.J. Torriero, Application of ionic liquids in electrochemical sensing systems. Biosensors and Bioelectronics, 2011. 26(5): p. 1775-1787.
61. Xing Zhao1, Q.-C.Z., Shou-Dong Xu, Ya-Xi Xu, Yue-Li Shi, Xin-Xi Zhang, A New Insight into the Content Effect of Fluoroethylene Carbonate as a Film Forming Additive for Lithium-Ion Batteries. Int. J. Electrochem. Sci, 2015. 10: p. 2515 - 2534.
62. Liu, G., et al., Optimization of Acetylene Black Conductive Additive and PVDF Composition for High-Power Rechargeable Lithium-Ion Cells. Journal of The Electrochemical Society, 2007. 154(12): p. A1129.
63. Li, J., et al., Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder. Journal of The Electrochemical Society, 2008. 155(3): p. A234.
64. Chou, S.-L., et al., Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 2014. 16(38): p. 20347-20359.
65. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
66. Morozov, S.V., et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 2008. 100(1).
67. Machado, B.F. and P. Serp, Graphene-based materials for catalysis. Catal. Sci. Technol., 2012. 2(1): p. 54-75.
68. Abalyaeva, V.V., et al., Electrosynthesis of a composite based on graphene oxide nanosheets and polyaniline with hexachloroiridate anion. Russian Chemical Bulletin, 2014. 63(3): p. 627-634.
69. Chen, D., L. Tang, and J. Li, Graphene-based materials in electrochemistry. Chemical Society Reviews, 2010. 39(8): p. 3157.
70. Thostenson, E.T., Z.F. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001. 61(13): p. 1899-1912.
71. Kumar, M. and Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. Journal of Nanoscience and Nanotechnology, 2010. 10(6): p. 3739-3758.
72. Zhou, X., et al., Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance. Electrochimica Acta, 2013. 108: p. 17-21.
73. Alemi, A., et al., Co-reduction synthesis of new LnxSb2−xS3 (Ln: Nd3+, Lu3+, Ho3+) nanomaterials and investigation of their physical properties. Physica B: Condensed Matter, 2011. 406(14): p. 2801-2806.
74. Yin, X., et al., Synthesis and luminescent properties of uniform monodisperse YBO3:Eu3+/Tb3+ microspheres. Crystengcomm, 2014. 16(25): p. 5543-5550.
75. Komaba, S., et al., Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries. ACS Applied Materials & Interfaces, 2011. 3(11): p. 4165-4168.
76. Li, L., et al., SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Research, 2014. 7(10): p. 1466-1476.
指導教授 張仍奎(Jeng-kuei Chang) 審核日期 2015-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明