博碩士論文 966402001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.17.154.171
姓名 廖韡智(Wei-Zhi Liao)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 南海北部靠近台灣的張裂性大陸邊緣之地體構造與沉積演育暨地熱流研究
(A study on tectonic and sedimentary development, and heat flows in the rifted northern margin of the South China Sea near Taiwan.)
相關論文
★ 台灣西南部中新世井下地層之沉積環境與層序地層研究★ 台灣西南海域含天然氣水合物地層之構造架構與沈積特徵
★ 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化★ 台灣海峽及台灣西部平原之沈積層速度構造
★ 台灣西南外海碰撞帶前緣的近代沉積作用與新構造運動★ 台灣中部早期前陸盆地的地層紀錄
★ 台灣西南部前陸地區演育與古應力分析★ 台灣西北部漸新世至更新世盆地演化及層序地層
★ 煤岩材料與沉積環境綜合研判★ 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例
★ 臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究★ 台灣西北部大漢溪剖面南莊層至楊梅層之沉積環境研究
★ 台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵★ 台灣西南外海高屏峽谷沉積物及沉積機制研究
★ 台灣西南海域天然氣水合物地質控制因素與資源量評估★ 台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 南海北坡為一新生代的張裂性大陸邊緣,在其上發育了一系列的張裂盆地,如台南盆地、珠江口盆地、瓊東南盆地等,其中台南盆地位在南海最東北側的大陸邊緣。本研究利用在南海東北部張裂邊緣的大陸斜坡區及深水區收集的反射震測剖面,搭配台南盆地陸棚區的鑽井資料,對台灣西南海域的南海東北部張裂性大陸邊緣的構造與沉積演育及地熱流進行研究。

地熱流研究共用了9口位在陸棚區的鑽井資料與通過大陸斜坡區的反射震測剖面。在陸棚區使用了Horner plot法對鑽井量測到的井底溫度進行溫度修正,獲得該深度的正確地層溫度,斜坡區則利用海底仿擬反射(BSR)在海床下的深度反推地層溫度。以海床下的深度與溫度的關係求得地溫梯度後,將地溫梯度與熱傳導率相乘即得到熱流值。地溫梯度與熱流值分別在28至128℃/km及40至159 mW/m2之間,其中陸棚區的平均地溫梯度與熱流值為34.5℃/km和62.7 mW/m2,斜坡區則為56.4℃/km與70.9 mW/m2。

構造與沉積演育研究則利用陸棚區的鑽井資料,將重要的地層面或不整合面對比到震測剖面。共對比出四個重要的層面,分別為更新世底部(約1.8百萬年)、上新世底部(約5.3百萬年)、中期中新世最大海漫面(約17百萬年)、以及分離不整合面(新第三紀底部)。震測剖面解釋工作則發現了:(1)分離不整合面下為古第三紀的地塹及沉積物。(2)數群被掩埋的海底火山,另有一座出露海床的早期中新世海底火山。火山熔岩流的反射訊號都位於中期中新世最大海漫面之下。(3)福爾摩沙峽谷上游下方的中新世地層中有大規模的疊瓦狀地層訊號。(4)研究區域東南部有大量的峽谷侵蝕與堆積形貌的反射訊號。(5)福爾摩沙峽谷下游兩側堆積了厚層的沉積物波。最後則進行震測相分析,共辨識出了7種震測相,分別為平行連續反射訊號震測相、波狀震測相、混亂震測相、U形峽谷侵蝕震測相、疊瓦狀震測相、強震幅地層反射組震測相、以及噴出火山活動震測相。

根據地層對比、震測剖面解釋及震測相分析,本研究重建了研究區域的演育模型:(1)在古第三紀同張裂時期,研究區域發育多條正斷層,形成數個地塹-地壘構造。其中在大陸斜坡上、九龍海脊下方,往北傾沒且可能切穿下部地殼的大型半地塹邊界斷層,在此時期已開始發育。(2) 早期中新世南海張裂以後,在現在的深水區發生了區域性的火山活動,這些火山活動一直持續到早期中新世結束前。(3)中期中新世到晚期中新世時期,火山活動結束後,研究區域的構造活動趨緩。位於下部斜坡區的古福爾摩沙海底峽谷系統在晚期中新世時開始發育。(4)上新世時期除了九龍海脊下的大型半地塹邊界斷層可能有活動外,其餘地區幾無構造活動。古福爾摩沙峽谷在研究區域東南部有多期峽谷侵蝕與堆積形貌,推測此區域有大量的砂質濁流沉積物堆積。(5)福爾摩沙峽谷下游的位置在更新世時期,從西北/東南向改道成為今日的東西向樣貌,並往東匯流至澎湖峽谷與馬尼拉海溝。原福爾摩沙峽谷下游流域上方則堆積沉積物波,從沉積物波底部推測其形成在早期更新世至中中期更新世之間。

摘要(英) A series of Cenozoic rifted basins developed in the northern margin of the South China Sea. Tainan Basin is one of these rifted basins near Taiwan lying in the outer margin. We employ reflection seismic data both in the shelf and deep-water areas and boreholes drilled in the shelf to understand the tectonic and sedimentary development, and heat flows in the northern SCS near Taiwan. Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows. The method of Horner plot is applied to obtain true formation temperatures from measured bottom-hole temperatures in the boreholes, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 ℃/km and 40 to 159 mW/m2, respectively. There is a marked difference for geothermal gradients and heat flows beneath the shelf and slope regions. It is cooler beneath the shelf with an averaged geothermal gradient of 34.5 ℃/km, and heat flow of 62.7 mW/m2, respectively. The continental slope shows a higher averaged geothermal gradient of 56.4 ℃/km, and heat flow of 70.9 mW/m2, respectively. Low heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the thinner sediment thickness beneath the slope.

Four key stratal surfaces (i.e. base of Pleistocene, base of Pliocene, 17 Ma Maximum Flooding Surface (MFS), and break-up unconformity of 30 Ma) and 7 seismic facies (i.e. continuous and parallel layer seismic facies, wavy seismic facies, chaotic seismic facies, U-shape canyon-cut seismic facies, imbricated layer seismic facies, HARPs seismic facies, and extrusive volcanism seismic facies) are recognized from seismic data with ages constrained by borehole stratigraphy drilled in the shelf. A model for the Cenozoic tectonic and sedimentary development in the rifted northern margin of the South China Sea near Taiwan is established. The occurrence of Paleogene fault-bounded grabens/half-grabens topped by break-up unconformity indicates that these rift basins develop on continental crust, attesting that thinned continental crust underlies the deep-water study area, rather than oceanic crust as reported in some literature. High heat-flow values in the continental slope may also result from this thinned continental crust. Extrusive volcanic bodies, of early Miocene age, are buried by thick deep-water sediments showing features of buried seamounts. Fairly continuous stratal surfaces of base Pliocene and base Pleistocene reveals that faulting and volcanic activities almost ceased to be active since middle Miocene. A series of channel cut-and-fills is observed in the late Miocene, Pliocene, and Pleistocene strata beneath or to the south of the modern Formosa Canyon. We name this channel system as Paleo-Formosa Canyon. Two distinct fields of deep-water sediment waves developed since middle Pleistocene are found lying to the west of modern deformation front/Manila Trench, and to the north and south of the Formosa Canyon, respectively.

關鍵字(中) ★ 張裂性大陸邊緣
★ 南海
★ 構造與沉積演育
★ 熱流值
★ 震測相
關鍵字(英) ★ rifted margin
★ South China Sea
★ tectonic and sedimentary development model
★ heat flow
★ seismic facies
論文目次 Chinese Abstract i

Abstract iv

Acknowledgement vii

Contents viii

List of figures x

List of tables xii

Chapter 1 1

Introduction 1

1.1 Introduction 1

1.2. Regional Geological Setting 3

1.3. Method and Data 6

1.3.1. Deriving Geothermal regimes 6

1.3.2. Establishing tectonic and sedimentary development model 10

Chapter 2 22

Heat flows in the rifted continental margin of the South China Sea near Taiwan 22

2.1. Geothermal gradients and heat flows from boreholes in the shelf region 22

2.2. Geothermal gradients and heat flows from BSRs in the slope region 23

2.3. A Discussion of geothermal regimes of the SCS near Taiwan 24

2.4. Summary 27

Chapter 3 35

Cenozoic tectonic and sedimentary developments in the deep-water northern margin of the South China Sea near Taiwan 35

3.1 Tectonic and sedimentary features 35

3.2 Stratigraphic correlation 36

3.3 Seismic facies for the Neogene strata 37

3.3.1 Seismic facies A: continuous and parallel reflection configuration 38

3.3.2 Seismic facies B: wavy and continuous reflection configuration: 38

3.3.3 Seismic facies C: chaotic reflection configuration: 39

3.3.4 Seismic facies D: U-shape canyon-cut reflection configuration : 40

3.3.5 Seismic facies E: shingled reflection configuration: 40

3.3.6 Seismic facies F: high amplitude reflector packages (HARPs) reflection configuration: 40

3.3.7 Seismic facies G: discontinuous, high amplitude and low frequency reflection configuration: 41

3.4 sediment thickness and sedimentation rates 41

Chapter 4 55

Discussion 55

4.1. Paleogene grabens and continental crust 55

4.2. Early post-breakup extrusive volcanic events 56

4.3. Paleo-Formosa Canyon system and sediment waves 57

4.4. Tectonic development of the Cenozoic rifted margin 58

Chapter 5 61

Conclusions 61

References 64

參考文獻 Allen, P.A. and Allen, J.R., Basin Analysis: Principles and Applications (2nd edition). Blackwell Scientific Publications, Oxford, 2005.

Beardsmore, G.R. and Cull, J.P., Crustal Heat Flow: A Guide to Measurement and Modelling. Cambridge university press, 2001.

Briais, A., Patriat, P., and Tapponnier, P., Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4), 6299-6328, 1993.

Chi, W.C., and Reed, D., Evolution of shallow, crustal thermal structure from subduction to collision: An example from Taiwan. GSA Bulletin, 120(5/6), 679-690, 2008.

Chi, W.C., Reed, D.L., Moore, G., Nguyen, T., Liu, C.S., and Lundberg, N., Tectonic wedging along the rear of the offshore Taiwan accretionary prism. Tectonophysics, 374, 199-217, 2003.

Chen, L., Wu, S.K., Chi, W.C., and Liu, C.S., Two dimensional fluid flow models offshore southwestern Taiwan. European Geosciences Union 2012. Vienna, Austria, 2012.

Chen, L, Chi, W.C., Wu, S.K., Liu, C.S., Shyu, C.T., Wang, Y., and Lu, C.Y., Two dimensional fluid flow models at two gas hydrate sites offshore southwestern Taiwan. Journal of Asian Earth Sciences, 92, 45-253, 2014.

Chiu, J.K., Tseng, W.H., and Liu, C.S., Distribution of gassy sediments and mud volcanoes offshore southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 703-722, 2006.

Clift, P. and Lin, J., Preferential mantle lithospheric extension under the South China margin. Marine and Petroleum Geology, 18, 929-945, 2001.

Clift, P.D., Lin, J., ODP Leg 184 Scientific Party, Patterns of extension and magmatism along the continent-ocean boundary, south China margin. In: Wilson, R.C.L, Beslier, M.O., Whitmarsh, R.b., Froitzheim, N., Taylor, B. (Eds.), Nonvolcanic Rifting of Continental Margins: A Comparison of Evidence From Land and Sea. Geological Society, Special Publications, London 187, pp. 489-510, 2001.

Cloetingh, S., van Wees, J.D., Ziegler, P.A., Lenkey, L., Beekman, F., Tesauro, M., Forster, A., Norden, B., Kaban, M., Hardebol, N., Bonte, D., Genter, A., Guillou-Frottier, L., Ter Voorde, M., Sokoutis, d., Willingshofer, E., Cornu, T., and Worum, G., Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for enhanced geothermal systems exploration in Europe. Earth-Science Reviews, 102, 159-206, 2010.

Damuth, J. E., Migrating sediment waves created by turbidity currents in the northern South China Basin. Geology, 7(11), 520-523, 1979.

Ding, W.W., Schnabel, M., Franke, D., Ruan, A.G., Wu, Z.L., Crustal structure across the northwestern margin of South China Sea: evidence for magma-poor rifting from a wide-angle seismic profile. Acta Geologica Sinica (English Edition), 86 (4), 854-866, 2012,

Ediger, V., Velegrakis, A.F., and Evans, G., Upper slope sediment waves in the Cilician Basin, northeastern Mediterranean. Marine Geology, 192, 321-333, 2002.

Franke, D., Barckhausen, U., Baristeas, N., engles, M., Ladate, S., Lutz, R., Montano, J., Pellejera, N., Ramos, E.G., and Schnabel, M., The continent-ocean transition at the southeastern margin of the Souht China Sea. Marine and petroleum Geology, 28, 1187-1204, 2011.

Gao, J., Wu, S, McIntosh, K., Mi, L., Yao, B., Chen, Z., Jia, L., The continent-ocean transition at the mid-northern margin of the South China Sea. Tectonophysics, 654, 1-19, 2015.

Gayet, P., dicharry, C., Marion, G., Graciaa, A., Lachaise, J., and Vesterov, A., Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chemical Engineering Science, 60, 5751-5758, 2005.

Gong, C., Wang, Y., Peng, X., Li, W., Qiu, Y., and Xu, S., Sediment waves on the South China Sea Slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific Deep Water into the South China Sea. Marine and Petroleum Geology, 32, 95-109, 2012.

Gong, C., Wang, Y., Xu, S., Pickering, K.T., Peng, X., Li, W., and Yan, Q., The northeastern South China Sea margin created by the combined action of down-slope and along-slope processes: Processes, products and implications for exploration and paleoceanography. Marine and Petroleum Geology, 64, 233-249, 2015.

Han, X., Suess, E., Huang, Y., Wu, N., Eisentauer, A., Bohrmann, G., Su, X., Abegg, F., Tao, J., Fan, Y., and shipboard scientists of Leg SO-177, Jiulong methane reef: First direct evidence of methane seepage in the South China Sea. European Geosciences Union 2005. Vienna, Austria, 2005.

He, L., Wang, K., Xiong, L., and Wang, J., Heat flow and thermal history of the South China Sea. Physics of the earth and planetary interiors, 126, 211-220, 2001.

Horner, D.R., Pressure build-up in wells. Proceedings of the Third World Petroleum congress, The Hague, 2, 924-931, 1951.

Houbolt, J.J.H.C. and Wells, P.R.A., Estimation of heat flow in oil wells based on a relation between heat conductivity and sound velocity. Geologie en Mijnbouw, 59(3), 215-24, 1980.

Hsu, S.K., Yeh, Y.C., Doo, W.B., and Tsai, C.H., New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 25, 29-44, 2004.

Hyndman, R.D., Foucher, J.P., Yamano, M.Y., and fishir, A., Deep sea bottom-simulating reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates. Earth and Planetary Science Letters, 109, 289-301, 1992.

Lachenbruch, A.H. and brewer, M.C., Dissipation of the temperature effect of drilling a well in Arctic Alaska. United States Geological Survey Bulletin, 1083-C, 73-109, 1959.

Lee, T.Y., Tang, C.H., Ting, J.S., and Hsu, Y.Y., sequence stratigraphy of the Tainan Basin, offshore southwestern Taiwan. Petroleum Geology of Taiwan, 28, 119-158, 1993.

Lester, R., Lavier, L.L., McIntosh, K., Van Avendonk, H.J.A., and Wu, F., Active extension in Taiwan′s precollision zone: A new model of plate bending in continental crust. Geology, 40, 831-834, 2012.

Lester, R., Van Avendonk, H., McIntosh, K., Lavier, L, Liu, C.S., Wang, T.K., and Wu, F., Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging. Journal of Geophysical Research: Solid Earth, 119, 2305-2323, 2014. doi:10.1002/2013JB010639.

Lewis, K.B. and Pantin, H.M., Channel-axis, overbank and drift sediment waves in the southern Hikurangi Trough, New Zealand. Marine Geology, 192, 123-151, 2002.

Li, X.H., Cretaceous magmatism and lithospheric extension in Southeast China. Jouraln of Asian Earth Sciences, 13, 293-305, 2000.

Li, C.F., Zhou, Z., Li, J., Hao, H., and Geng, J., Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications. Marine Geophysical Researches, 28, 59-79, 2007.

Li, L., Lei, X., Zhang, X., and Sha, Z., Gas hydrate and associated free gas in the Dongsha Area of northern South China Sea. Marine and Petroleum Geology, 39, 92-101, 2013.

Liao, W.Z., Lin, A.T., Liu, C.S., Oung, J.N., Wang, Y., Heat flow in the rifted continental margin of the South China Sea near Taiwan and its tectonic implications. Journal of Asian Earth Sciences, 92, 233-244, 2014.

Lin, A.T. and Watts, A.B., Origin of the West Taiwan Basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research, 107 (B9), 2185, 2002. doi:10.1029/2001JB000669

Lin, A.T., Watts, A.B., and Hesselbo, S.P., Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15, 453-478, 2003.

Lin, A.T., Liu, C.S., Lin, C.C., Schnurle, P., Chen, G.Y., Liao, W.Z., Teng, L.S., Chuang, H.-J., and Wu, M.-S., Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology. 255, 186-203, 2008.

Lin, C.C., Lin, A.T., Liu, C.S., Chen, G.Y., Liao, W.Z., and Schnurle, P., Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Marine and Petroleum Geology, 26, 1118-1131, 2009.

Lin, C.C., Lin, A.T., Liu, C.S., Horng, C.S., Chen, G.Y., Wang, Y. Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan. Marine Geophysical Researches, 35, 21-35, 2014. DOI 10.1007/s11001-013-9203-7.

Liu, C.S., Liu, S.Y., Lallemand, S., Lundberg, N., and Reed, D.L., Digital elevation model offshore Taiwan and its tectonic implication. Terrestrial, Atmospheric and Oceanic Sciences, 9, 705-738, 1998.

Liu, C.S., Deffontaines, B., Lu, C.Y., and Lallemand, S., Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan. Marine Geophysical Researches, 25, 123-137, 2004.

Liu, C.S., Schnurle, P., Wang, Y., Chung, S.H., Chen, S.C., and Hsiuan, T.H., Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17, 615-644, 2006.

Lom-Keil, H.V., Spiess, V., and Hopfauf, V., Fine-Grained sediment waves on the western flank of the Zapiola Drift, Argentien Basin: evidence for variations in Late Quaternary bottom flow activity. Marine Geology, 192, 239-258, 2002.

Ludman, T. and Wong, H.K., Neotectonic regime on the passive continental margin of the northern south China Sea. Tectonophysics, 311, 113-138, 1999.

Ludmann, T, Wong, H.K., and Wang, P.,. Plio-Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Marine Geology, 172, 331-358, 2001

McIntosh, K., Lavier, L., Van Avendonk, H., Lester, R., Eakin, D., and Liu, C.S., Crustal structure and inferred rifting processes in the northeast South china Sea. Marine and Petroleum geology, 58, 612-626, 2014.

Minshull, T.A. and White, R., Sediment compaction and fluid migration in the Makran accretionary prism. Jouranl of Geophysical Research, 94(6), 7387-7402, 1989.

Mosher, D.C. and Tomson, R.E., The Foreslope Hills: large-scale, fine-grained sediment waves in the Strait of Georgia, British Columbia. Marine Geology, 192, 275-295, 2002.

Nissen, S.S, Hayes, D.E., Buhl, P., Diebold, J., Yao, B., Zeng, W,. Chen, Y., Deep penetrating seismic sounding across the northern margin of the South Chian Sea. Journal of Geophysical Research: Solid Earth, 100 (B11), 22407-22433, 1995.

Shi, X., Qiu, X., Xia, K., and Zhou, D., Characteristics of surface heat flow in the South China Sea. Journal of Asian Earth Sciences. 22, 265-277, 2003.

Shyu, C.T., Chen, Y.J., Chiang, S.T., and Liu, C.S., Heat flow measurement over bottom simulating reflectors, offshore southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 845-869, 2006.

Sibuet, J.C., Hsu, S.K., Le Pichon, X., Le Formal, J.P., Reed, D., Moore, G., and Liu, C.S., East Asia plate tectonics since 15 Ma: Constraints from the Taiwan region. Tectonophysics, 344, 103-134, 2002.

Stoll, R.D., Ewing, J., and Bryan, G.M., Anomalous velocities in sediments containing gas hydrate. Journal of Geophysical Research, 76, 2090-2094, 1971.

Suess, E., RV SONNE Cruise Report SO 177, Sino-German Cooperative Project, South China Sea Continental Margin: Geological Methane Budget and Environmental Effects of Methane Emissions and Gas Hydrate. IFM-GEOMAR Reports. http://store.pangaea.de/documentation/Reports/SO177.pdf assessed on 28 November, 2005.

Tang, F.S., Oung, J.N., Hsu, Y.Y. and Yang, C.N., Elementary study of structural evolution in Tainan Basin in southwest Taiwan Strait. Petroleum Geology of Taiwan, 33, 125-149, 1999. (in chinese)

Taylor, B., Hayes, D.E., Origin and history of the South China Sea Basin. In: Hayes, C.E., (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands 2. American Geophysical Union, Geophysical monograph, 27, pp. 23-56, 1983.

Teng, L. S., & Lin, A. T., Cenozoic tectonics of the China continental margin: Insights from Taiwan. Geological Society, London, Special Publications, 226(1), 313-332, 2004.

Tsao, W.C.Q., Oung, J.N., Yang, C.M., Lee, Y.W. Wang, M.H., Uang, Y.C., and Tang, S.-L., Studies on hydrocarbon potential of Mesozoic formation in the Tainan Basin, southwestern offshore Taiwan. Min. Metall, 36 (1), 32-45, 1992. (in Chinese)

Tzeng, J., Uang, Y.C., Hsu, Y.Y., and Teng, L.S., Seismic stratigraphy of the Tainan Basin. Petroleum Geology of Taiwan, 30, 281-308, 1996. (in Chinese)

Villinger, H., Trehu, A.M., and Grevemeyer, I., Seafloor marine heat flux measurements and estimation of heat flux from seismic observations of bottom simulating reflectors. Geophysical Characterization of Gas Hydrates, special volume, ISBN (13) 9181560802181, Society of Exploration Geophysicists, 279-298, 2010.

Wang, K. L., Lo, Y. M., Chung, S. L., Lo, C. H., Hsu, S. K., Yang, H. J., & Shinjo, R. Age and Geochemical Features of Dredged Basalts from Offshore SW Taiwan: The Coincidence of Intra-Plate Magmatism with the Spreading South China Sea. Terrestrial, Atmospheric and Oceanic Sciences,23 (6), 657-669, 2012.

Wang, T., Chen, M., Lee, C., Xia, K., Seismic imaging of the transitional curst across the northeastern margin of the South China Sea. Tectonophysics, 412, 239-254, 2006.

Watson, M.P., Hayward, A.B., Parkinson, D.N., and Zhang, Z.M., Plate tectonic history, basin development and petroleum source rock deposition in onshore China. Marine Petroleum Geology, 4, 205-225, 1987.

Walpes, D.W. and Ramly, M., A statistical method for correcting log-derived temperatures. Petroleum Geoscience, 7(3), 231-240, 2001.

Waples, D.W. and Pedersen, M.R., Evaluation of Horner plot-corrected log-derived temperatures in the Danish Central Graben, North Sea. Natural Resources Research, 13(4), 223-227, 2004.

Wu, J.M., Cenozoic basins of the South China Sea. Episodes, 11, 91-96, 1988.

Wynn, R.B. and Stow, D.A.V., Classification and characterization of deepwater sediment waves. Marine Geology, 192, 7-22, 2002.

Yamano, M., Foucher, J.P., Kinoshita, M., fisher, A., Hyndman, R.D., and ODP Leg 131 Shipboard Scientific Party, Heat flow and fluid flow regime in the western Nankai accretionary prism. Earth and Planetary Science Letters, 109, 451-462, 1992.

Yan, P., Zhou, D., Liu, Z., A crust structure profile across the northern continental margin of the South China Sea. Tectonophysics, 338, 1-21, 2001.

Yang, K.M., Ting, H.H., and Yuan, J., Structural styles and tectonic models of Neogene extensional tectonics in southwestern Taiwan: Implications for hydrocarbon exploration. Petroleum Geology of Taiwan, 26, 1-31, 1991.

Yeh, Y.C., Hsu, S.K., Doo, W.B., Sibuet, J.C., Liu, C.S., and Lee, C.S., Crustal features of the northeastern South China Sea: insights from seismic and magnetic interpretations. Marine Geophysical Research, 33(4), 307-326, 2012.

Yeh, Y. C., Sibuet, J. C., Hsu, S. K., & Liu, C. S. Tectonic evolution of the Northeastern South China Sea from seismic interpretation. Journal of Geophysical Research: Solid Earth (1978–2012), 115(B6), 2010.

Yu, H.S., The Pearl River Mouth Basin: A rift basin and its geodynamic relationship with the southeastern Eurasian margin. In: J. Angelier (Editor), Geodynamic Evolution of the Eastern Eurasian Margin. Tectonophysics, 183, 177-186, 1990.

Yu, H.S., Structure, stratigraphy and basin subsidence of Tertiary basins along the Chinese southeastern continental margin. Tectonophysics, 235, 63-76, 1994.

Yu, H.S. and Hong, E., Shifting submarine canyons and development of a foreland basin in SW Taiwan: Controls of foreland sedimentation and longitudinal sediment transport. Journal of Asian Earth Sciences, 27, 922-932, 2006.

Yuan, Y., Zhu, W., Mi, L., Zhang, G., Hu, S., and He, L., "Uniform geothermal gradient" and heat flow in the Qiongdongan and Pearl River Mouth Basins of the South China Sea. Marine and Petroleum Geology, 26, 1152-1162, 2009.

Zhu, J., Qiu, X., Kopp, H., Xu, H., Sun, Z., Ruan, A., Sun, J., Wei, X., Shallow anatomy of a continent-ocean transition zone in the northern south China Sea from multichannel seismic data. Tectonophysics, 554, 18-29, 2012.

指導教授 林殿順(Andrew Tien-Shun Lin) 審核日期 2015-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明