博碩士論文 102329020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.133.118.122
姓名 曾冠棋(Kuan-Chi Tseng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 製備鈦-鈷金屬氧化物奈米纖維與其本質催化性質之研究
(Fabricaton of Ti-Co metal oxide nanofibers with improved intrinisic peroxidase-like activity)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 鋅空氣電池之電解質開發
★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響★ 耐高壓離子液體電解質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來文獻指出二氧化鈦與四氧化三鈷皆具有類似過氧化物物質催化活性(peroxidase activity),可將過氧化氫與不同的指示劑中進行本質類過氧化物催化,如TMB。有機物分解過程中時常會產生過氧化氫,例如葡萄糖氧化酶(GOx)可將葡萄糖氧化成葡萄糖酸與過氧化氫,利用比色法可以有效的偵測葡萄糖濃度。而且鈦-鈷金屬氧化物利用此催化作用於暗室下,在降解有機染料部分於本研究中有著顯著的效果。本實驗主要要探討與尋找最佳參數之鈦-鈷金屬氧化物本質催化有效地進行葡萄糖檢測與RhB有機染料降解。

本研究以靜電紡絲法控制鈷鈦金屬離子莫爾數比,製備出直徑範圍150~250nm的一維奈米結構,並利用XRD, SEM, TEM進行材料分析。其中Co2TiO4有優異的本質過氧化酶活性,研究發現其會在本質催化反應的過程中分解出同為過過氧化物酶物質之CoTiO3 和Co3O4,使其在反應過程中會因分解進而有更大表面積,使得其在葡萄糖檢測及染料降解有相當大的潛力。

摘要(英) Recently, many research has shown that Titanium dioxide and cobalt(II) dicobalt(III) oxide exhibit intrinsic peroxidase-like activity towards classical peroxidase substrates such as 3,3,5,5,-tetramethylbenzdine (TMB) in the presence of H2O2. It is well-known that H2O2 is the main product of the glucose oxidase (GOX)-catalyzed reaction. Since it can be catalyzed by Titanium-Cobalt metal oxide to produce the color signal, the colorimetric detection of glucose can be realized. More interestingly, the Titanium-Cobalt metal oxide nanofibers showed powerful ability towards activation of H2O2, displaying outstanding dark catalytic activity for the degradation of organic dye. As peroxidase mimetics, Titanium-Cobalt metal oxide nanofibers were used for colorimetric determination of glucose and degradation of organic dye RhB.

In this study, we control the Moore ratio of cobalt and titanium ions of electrospinning precursor. The diameter of nanofibers is in the range of 150 ~ 250 nm . The as-prepared sample was characterized in detail by XRD, SEM, TEM. We found that Co2TiO4 nanofibers were decompose to the mixture of CoTiO3 and Co3O4 after catalysis. It indicate that Co2TiO4 nanofibers can increase surface area by decomposition and show the best peroxidase activity.

關鍵字(中) ★ 鈦-鈷金屬氧化物
★ Co2TiO4
★ 靜電紡絲
★ 過氧化物酶物質
關鍵字(英) ★ Titanium-Cobalt metal oxide
★ Co2TiO4
★ Electrospinning
★ Peroxidase mimic
論文目次 摘要I

ABSTRACT II

致謝III

目錄V

圖目錄VIII

表目錄XI

第一章 諸論1

1.1鈦-鈷金屬氧化物材料介紹 1

1.1.1二氧化鈦材料介紹1

1.1.2鈦酸鈷材料介紹3

1.1.3四氧化三鈷材料介紹6

1.2一維鈦-鈷金屬氧化物材料應用7

1.2.1光觸媒(Photocatalysts)7

1.2.2氣體感測器(Gas Sensors)8

1.2.3生醫材料(Biomaterials)10

1.2.4染料敏化太陽能電池(Dye-Sensitized Solar Cell) 10

1.3過氧化物酶物質之本質催化應用12

第二章 實驗方法14

2.1 實驗流程14

2.2實驗藥品15

2.3實驗儀器16

2.3.1奈米靜電紡絲機 (Nanofiber Electrospinning Unit)16

2.3.2 三區管型爐 (Tube Furnaces)17

2.3.3場發射掃描式電子顯微鏡(FE-SEM)18

2.3.4 X光粉末繞射儀(X-ray Diffraction, XRD)19

2.3.5穿透式電子顯微鏡(Transmission Electron Microscopy)19

2.3.6紫外光-可見光光譜儀(UV-VIS Spectrophotometer) 20

第三章 實驗結果與討論22

3.1研究動機22

3.2實驗步驟25

3.2.1製備金屬鹽類前驅溶液25

3.2.2靜電紡絲製備奈米纖維26

3.2.3 退火熱處理27

3.2.4利用類過氧化酶本質活性降解有機染料28

3.2.5葡萄糖檢測28

3.3材料分析29

3.3.1 SEM表面形貌分析29

3.3.2 XRD粉末相鑑定分析33

3.3.3 TEM微結構分析35

3.3.4奈米纖維降解有機染料之特性38

3.3.5葡萄糖感測性質分析46

第四章 結論53

第五章 未來展望54

參考文獻 56

參考文獻 [1]. A.A. Ismail, D.W. Bahnemann, "Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms", Journal of Materials Chemistry, vol. 21 (2011) 11686.

[2] A.L. Linsebigler, G. Lu, J.T. Yates Jr, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results", Chemical Reviews, vol. 95 (1995) 735-758.

[3] M. Landmann, E. Rauls, W.G. Schmidt, " The electronic structure and optical response of rutile, anatase and brookite TiO2", Journal of Physics: Condensed Matter , vol. 24 (2012) 195503

[4] S.D. Mo, W.Y. Ching, "Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite", Physical Review B, vol. 51 (1995) 13023-13032.

[5] A. Mills, S. Le Hunte, " An overview of semiconductor photocatalysis ", Journal of Photochemistry and Photobiology A: Chemistry, vol. 108 (1997) 1-35.

[6] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, "Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires", Nano Letters, vol. 2 (2002) 717-720.

[7] B. Liu, E.S. Aydil, "Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells", Journal of the American Chemical Society, vol. 131 (2009) 3985-3990.

[8] J.M. Macak, H.Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, "Smooth anodic TiO2 nanotubes", Angewandte Chemie International Edition, vol. 44 (2005) 7463-7465.

[9] N. Wu, J. Wang, D.N. Tafen, H. Wang, J.-G. Zheng, et al., "Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts", Journal of the American Chemical Society, vol. 132 (2010) 6679-6685.

[10] C. Xiong, K.J. Balkus, "Fabrication of TiO2 nanofibers from a mesoporous silica film", Chemistry of materials, vol. 17 (2005) 5136-5140.

[11] N. Yamazoe, G. Sakai, K. Shimanoe, "Oxide semiconductor gas sensors", Catalysis Surveys from Asia, vol. 7 (2003) 63-75

[12] N. Barsan, D. Koziej, U. Weimar, "Metal oxide-based gas sensor research: How to? ", Sensors and Actuators B, vol. 121 (2007) 18–35

[13] F. Fang, J. Futter, A. Markwitz and J. Kennedy, "UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method ",Nanotechnology, vol. 20 (2009) 245502

[14] D. R. Miller, S. A. Akbar, P. A. Morris, "Nanoscale metal oxide-based heterojunctions for gas sensing: A review", Sensors and Actuators B: Chemical, vol. 204 (2014) 250–272

[15] G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes, "A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination", Journal of Materials Research, vol. 19 (2004) 628-634.

[16] A. Sclafani, J. Herrmann, "Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions", The Journal of Physical Chemistry, vol.100 (1996) 13655-13661.

[17] J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, "Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers", The Journal of Physical Chemistry C, vol.114 (2010) 9970-9974.

[18] J.M. Skoner, K.T. Pitman, "Facial plastic and reconstructive surgery," Third Edition, Head Neck, (2010).

[19] A.K. Kafi, G. Wu, A. Chen, "A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays", Biosensors and Bioelectronics, vol. 24 (2008) 566-571.

[20] S. Huang, G. Schlichthörl, A. Nozik, M. Grätzel, A. Frank, "Charge recombination in dye-sensitized nanocrystalline TiO2solar cells", The Journal of Physical Chemistry B, vol.101 (1997) 2576-2582.

[21] M. Grätzel, "Photoelectrochemical cells", Nature, vol.414 (2001) 338-344.

[22] X. Zhang, B. Lu, R. Li , C. Fan , Z. Liang, P. Han, "Structural, electronic and optical properties of ilmenite ATiO3 (A=Fe, Co, Ni) ", Materials Science in Semiconductor Processing, vol.39 (2015) 6–16.

[23] X. Chu, X. Liu, G. Wang, and G. Meng, "Preparation and gas-sensing properties of nano-CoTiO3", Materials Research Bulletin, Vol. 34 (1999) 1789–1795.

[24] H. Y. He, "Humidity sensitivity of CoTiO3 thin film prepared by sol–gel method", Materials Technology, Vol. 22 (2007) 95–97.

[25] Y. Q. Liang, Z. D. Cui, S. L. Zhu, Z. Y. Li, X. J. Yang, Y. J. Chen and J. M. Ma, "Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co3O4/n-TiO2 heterojunction synthesized at low temperature", Nanoscale, Vol. 5 (2013) 10916-10926.

[26] Y. Shao, W. Chen, E. Wold, J. Paul, "Dispersion and electronic structure of titania-supported cobalt and cobalt oxide", Langmuir, Vol. 10 (1994)178-187.

[27] I. Ganesh, A.K. Gupta, P.P. Kumar, P.S. Chandra Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, " Preparation and characterization of Co-doped TiO2 materials for solar light induced current and photocatalytic applications ",Materials Chemistry and Physics, vol. 135 (2012) 220-234.

[28] Y. Qu, W. Zhou, and H. Fu , "Porous Cobalt Titanate Nanorod: A New Candidate for Visible Light-Driven Photocatalytic Water Oxidation", ChemCatChem, vol. 6(2014) 265-270.

[29]T. M. Pan, T. F. Lei, T. S. Chao, K. L. Chang, and K. C. Hsiehc, "High quality ultrathin CoTiO3 high-k gate dielectrics", Electrochemical and Solid-State Letters, vol. 3 (2000) 433-434.

[30]S. H. Chuang, R. H. Gao, D. Y. Wang, H. P. Liu, L. M. Chen, M. Y. Chiang, "Synthesis and characterization of ilmenite-type cobalt titanate powder", vol. 57(2010) 932–937

[31] M.P. Zheng, M.Y. Gu, Y.P. Jin, H.H. Wang, P.F. Zu, P. Tao, J.B. He, "Effects of PVP on structure of TiO2 prepared by the sol–gel process ", Materials Science and Engineering: B, vol.87 (2001)197

[32] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles," Nature nanotechnology, vol. 2 (2007) 577-583.

[33] D. Baird, "Discovering the nanoscale", (2004).

[34] F. Mizutani, S. Yabuki, "Rapid determination of glucose and sucrose by an amperometric glucose-sensing electrode combined with an invertase/mutarotaseattached measuring cell," Biosensors and Bioelectronics,vol. 12 (1997) 1013-1020.

[35] C. Radhakumary, K. Sreenivasan, "Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles," Analytical Chemistry, vol. 83 (2011) 2829-2833.

[36]X. Chen, X. Tian, B. Su, Z. Huang, X. Chen, M. Oyama, "Au nanoparticles on citrate-functionalized graphene nanosheets with a high peroxidase-like performance," Dalton Transactions, vol. 43 (2014) 7449-7454.

[37] L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed, G. Xu, "Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection," Analytica Chimica Acta, vol. 762 (2013) 83-86.

[38] Y. Chen, H. Cao, W. Shi, H. Liu, Y. Huang, "Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing," Chemical Communications, vol. 49 (2013)5013-5015.

[39]X. Cao, N. Wang, "A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays," Analyst, vol. 136 (2011)4241-4246.

[40]J. Mu, Y. Wang, M. Zhao, L. Zhang, "Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles," Chemical Communications, vol. 48 (2012) 2540-2542.

[41]L. Zhang, L. Han, P. Hu, L. Wang and S. Dong, "TiO2 nanotube arrays: intrinsic peroxidase mimetics " Chemical Communications, vol. 49(2013) 10480-10482.

[42] H. Lv, L. Ma, P. Zeng, D. Ke, T. Peng, "Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light," Journal of Materials Chemistry, vol. 20 (2010) 3665-3672.

[43]Y. Hou, X. Li, Q. Zhao, G. Chen,"ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism," Applied Catalysis B: Environmental, vol. 142–143 (2013) 80-88.

[44] K.N. Chaudhari, N.K. Chaudhari, J.S. Yu, "Peroxidase mimic activity of hematite iron oxides (small alpha-Fe2O3) with different nanostructures," Catalysis Science & Technology, vol. 2 (2012) 119-124.

[45] Y. Xu, M. A. A. Schoonen, "The absolute energy positions of conduction and valence bands of selected semiconducting minerals,"American Mineralogist, vol. 85 (2000) 543 -556.

[46] K.T. Jacob , G. Rajitha, "Role of entropy in the stability of cobalt titanates," The Journal of Chemical Thermodynamics, vol. 42 (2010) 879–885.

[47] N. Sakamoto, "Magnetic properties of cobalt titanate," Journal of the Physical Society of Japan, vol. 17 (1962) 99-102.

[48] K.H. Buchel, H.H. Moretto, P. Woditsch, "Industrial Inorganic Chemistry, second ed," Wiley–VCH, (2000).

[49] J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang, L. Guo, "Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction," Scientific Reports , (2013) 3, 2300

[50] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," Nature, vol. 407, (2000) 496-499.

[51] K. Ramachandram, C. O. Oriakhi, M. M. Lerner, V. R. Koch, "Intercalation chemistry of cobalt and nickel dioxides: A facile route to new compounds containing organocations," Materials Research Bulletin , vol.31 (1996) 767-772.

[52] W.Y. Li, L.N. Xu, J. Chen, "Co3O4 nanomaterials in lithium-ion batteries and gas sensors," Advanced Functional Materials, vol.15( 2005) 851-857.

[53] T. Maruyama, S. Arai, "Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition," Journal of The Electrochemical Society, vol. 143 (1996) 1383-1386.

[54] T. Amna, M.S. Hassan, M-S. Khil, I. H. Hwang, "Interaction of magnetic cobalt based titanium dioxide nanofibers with muscle cells: in vitro cytotoxicity evaluation," Journal of Sol-Gel Science and Technology, vol. 69 (2014) 338-344.

[55] Q. Wang, S. Liu, H. Sun, and Q. Lu, "Synthesis and intrinsic peroxidase-like activity of sisal-like cobalt oxide architectures," Industrial & Engineering Chemistry Research, vol.53 (2014) 7917−7922.

[56] Y. Yang, J. Cui, P. Yi, X. Zheng, X. Guo, W. Wang, "Effects of nanoparticle additives on the properties of agarose polymer electrolytes ," Journal of Power Sources, vol. 248 (2014) 988-993

指導教授 李勝偉、李勝隆(Sheng-Wei Lee Sheng-Long Lee) 審核日期 2015-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明