博碩士論文 100222026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.21.104.109
姓名 郭蓁蓁(Chen-chen Kuo)  查詢紙本館藏   畢業系所 物理學系
論文名稱 金鎳奈米核殼結構的巨觀法拉第感應及磁性鬆弛研究
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文討論Au@Ni核殼結構奈米顆粒的磁性研究與磁性鬆弛現象,使用氣相冷凝法的雙鍍源方式製備奈米顆粒,利用XRD和EDXS分析樣品成分與粒徑,得到顆粒平均粒徑約10 nm,與AFM影像分析結果相符。
Au@Ni奈米顆粒的磁滯現象持續到100 K,在1.8 K的矯頑磁場34 Oe,殘留的磁化強度0.3 emu/g。在低的外加磁場且溫度低於TB易見記憶效應,以Protocol 1的實驗條件可以看到Au@Ni奈米顆粒出現記憶效應。
Au@Ni奈米顆粒的磁性鬆弛研究,除發現磁化強度有翻轉及反轉的現象以外,量測的磁化強度初始值以及磁化強度隨時間的圖形變化,對於外在的實驗條件是敏感的,磁化強度翻轉的來源與樣品為核殼結構有關。磁化強度隨時間鬆弛的曲線,應有兩個分量的貢獻,分別是殘留的磁化強度Mi曲線和感應的磁化強度Mr曲線。
Au@Ni奈米顆粒的磁性鬆弛現象,除與溫度、外加磁場有關以外,還受到降溫過程、降場速率、外加磁場時間、磁性量測的影響。
摘要(英) We report on the magnetic properties and magnetic relaxation behaviors in nano-sized core@shell structure of Au@Ni. The Au@Ni NPs were fabricated employing the gas-condensation method, using a chamber equipped with two decoupled evaporation sources for separate evaporation of Ni or Au. We have X-ray diffraction patterns and EDXS spectra, resulting in a mean particle diameter of 10 nm for the Au@Ni, which agrees well with that was obtained from the AFM images.
Magnetic hysteresis can be clearly seen in the M(Ha) curves taken below 100 K, with a coercivity of HC = 34 Oe and a low remanence of Mr = 0.3 emu/g at 1.8 K. Memory effect can be clearly seen in protocol 1, indicating that low Ha and below TB is important for memory effect.
The large inverse remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the Ha off. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxation through time were found. All various types of the temporal relaxation curves of the remanent magnetizations are successfully scaled by a relaxation time to describe the reduction rate together with a dynamic exponent to describe the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.
關鍵字(中) ★ 金鎳奈米顆粒
★ 核殼結構
★ 磁性鬆弛
★ 法拉第感應
關鍵字(英)
論文目次 中文摘要 I
英文摘要 II
誌謝 III
圖目錄 VI
表目錄 X
第一章 簡介 1
1.1 緒論 1
1.2 金與鎳的基本物理性質介紹 2
1.3 實驗動機 4
第二章 實驗儀器與樣品粒徑分析 5
2.1 奈米顆粒的製備 5
2.2 X光繞射原理介紹 7
2.3 原子力顯微鏡介紹 8
2.4 樣品結構與粒徑分析 9
2.5 物理特性量測系統介紹 11
2.6 超導量子干涉震動磁量儀 12
參考文獻 13
第三章 Au@Ni奈米顆粒磁性分析與記憶效應14
3.1 朗之萬順磁理論 14
3.2 磁滯曲線 16
3.3 磁化曲線之擬合分析 18
3.4 擬合參數隨溫度變化之討論 21
3.5 記憶效應 25
參考文獻 35
第四章 Au@Ni奈米顆粒的磁性鬆弛行為與擬合分析 37
4.1 磁性鬆弛的巨觀現象 37
4.2 描述擬合曲線 42
4.3 低磁場降溫後磁性鬆弛的行為及擬合分析46
4.4 中磁場降溫後磁性鬆弛的行為及擬合分析52
4.5 高磁場降溫後磁性鬆弛的行為及擬合分析56
4.6 外加磁場對磁性鬆弛的影響 61
參考文獻 64
第五章 影響Au@Ni奈米顆粒磁性鬆弛的其他因素65
5.1 降場速率對磁性鬆弛的影響 65
5.2 外加磁場時間對磁性鬆弛的影響 68
5.3 磁性量測對磁性鬆弛的影響 74
參考文獻 75
第六章 結論 76
參考文獻 陳東煌,「複合奈米粒子-有趣的人造原子」,科學發展,408期,2006。
郭彥廷,「顆粒間交互作用對奈米金自發磁性之影響」,國立中央大學,碩士論文,民國97年6月。
David R. Lide, Handbook of Chemical and Physics, CRC, 76th, 1995-1996.
Y. Sun, M. B. Salamon, K. Garnier and R. S. Averback, “Memory
Effects in an Interacting Magnetic Nanoparticle System ”, Phys. Rev. Lett., 91, 167206, 2003.
N. A. Spaldin, Magnetic material, Cambridge University Press, 2003.
C. Kittel, Introduction to solid state physics, 8th ed, Wiley, United States, 1976.
S. Chakraverty, M. Bandyopadhyay, S. Chatterjee, S.Dattagupta, A. Frydman, S. Sengupta, and P. A. Sreeram, “Memory in a magnetic nanoparticle system: Polydispersity and interaction effects ”, Phy. Rev. B, 71, 054401, 2005.
G. Hassnain Jaffari, Thomas Ekiert, K. M. Unruh, and S. Ismat Shah, “Effect of particle size distribution on the magnetic properties γ-Fe2O3 nanoparticles ”, Materials Science and Engineering, B 177, 935–941, 2012.
P. Didukh, J. M. Greneche, A. Ślawska-Waniewska, P. C. Fannin, and Ll. Casas, “Surface effects in CoFe2O4 magnetic fluids studied by Mössbauer spectrometry ”, Journal of Magnetism and Magnetic Materials, 242–245, 613–616, 2002.
R. Aquino, J. Depeyrot, M. H Sousa, F. A. Tourinho, E. Dubois and R. Perzynski, “Magnetization temperature dependence and freezing of surface spins in magnetic fluids based on ferrite nanoparticles ”, Phys. Rev. B, 72, 184435, 2005.
Steen Mørup and Britt Rosendahl Hansen, “Uniform magnetic
excitations in nanoparticles ”, Phys. Rev. B, 72, 024418, 2005.
吳勝允、李文獻,「奈米銀微粒的非線性磁激發」,物理雙月刊,第廿八卷五期,2006。
D. K. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, M. Muhammed, “Characterization and MRI studyof surfactant-coated
superparamagnetic nanoparticles administered into the rat brain ”, Journal of Magnetism and Magnetic Materials, 225, 256–261, 2001.
Y. Sun, M. B. Salamon, K. Garnier and R. S. Averback, “Memory
Effects in an Interacting Magnetic Nanoparticle System ”, Phys. Rev. Lett., 91, 167206 , 2003.
D. De, A. Karmakar, M. K. Bhunia, A. Bhaumik, S. Majumdar, and S. Giri, “Memory effects in superparamagnetic and nanocrystalline Fe50Ni50 alloy ”, Journal of Applied Physics, 111, 033919, 2012.
Vijay Bisht and K. P. Rajeev, “Memory and aging effects in NiO nanoparticles ”, J. Phys.: Condens. Matter, 22, 016003, 2010.
Shengqiang Zhou (周生强), Artem Shalimov, Kay Potzger, Manfred Helm, Jürgen Fassbender, and Heidemarie Schmidt, “MnSi1.7 nanoparticles embedded in Si: Superparamagnetism with collective behavior ”, Phys. Rev. B, 80, 174423, 2009.
I. Gordon, P. Wagner, V. V. Moshchalkov, Y. Bruynseraede, M.
Apostu, R. Suryanarayanan, and A. Revcolevschi, “Temperature
dependent memory effects in the bilayer manganite
(La0.4Pr0.6)1.2Sr1.8Mn2O7 ”, Phys. Rev. B, 64, 092408, 2001.
David R. Lide, Handbook of Chemical and Physics, CRC, 76th,
1995-1996.
Shengqiang Zhou(周生强), Artem Shalimov, Kay Potzger, Manfred
Helm, Jürgen Fassbender, and Heidemarie Schmidt, “MnSi1.7
nanoparticles embedded in Si: Superparamagnetism with collective behavior ”, Phys. Rev. B, 80, 174423, 2009.
A. K. Pramanik and A. Banerjee, “Memory, relaxation and aging
effect in Pr0.5Sr0.5MnO3 nanoparticles ”, Journal of Physics:
Conference Series, 200, 072075, 2010.
S. Harikrishnan, S. Rößler, C. M. N. Kumar, Y. Xiao, H. L. Bhat,U. K. Rößler, F. Steglich, S. Wirth and Suja Elizabeth, “Memory effect in Dy0.5Sr0.5MnO3 single Crystals ” , J. Phys.: Condens. Matter, 22, 346002, 2010.
G. M. Tsoi, L. E. Wenger, U. Senaratne, R. J. Tackett, E. C. Buc, R. Naik, P. P. Vaishnava and V. Naik, “Memory effects in a superparamagnetic γ-Fe2O3 system ”, Phy. Rev. B, 72, 014445, 2005.
指導教授 李文献(W.H. Li) 審核日期 2015-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明