博碩士論文 102350607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:3.133.110.37
姓名 溫亞倫(Allan Waimin Cardona)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 Prefeasibility Assessment of a Grid-connected PV Power Plant for Rural Electrification in Honduras
(Prefeasibility Assessment of a Grid-connected PV Power Plant for Rural Electrification in Honduras)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 不同型式光纖與集光器搭配之效率測試★ 微電滲泵之暫態熱流研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之目的是針對宏都拉斯因應鄉村電氣化所建置的太陽光電發電廠進行可行性評估,以增加電力輸送網的可靠性和餘度配置。發電廠址位於宏都拉斯的Alianza,該位置每日的水平輻射量為6.09 kWh/m2,為宏國中水平輻射量最高的地區之一。此發電廠的容量為720 kWp,此容量相當於該社區未來20年的最大用電需求。
本研究是根據太陽能與風能資源評估計劃(Solar and Wind Energy Resource Assessment Program, SWERA)的月平均輻射量數據進行評估。本文技術層面的評估是運用PVsyst軟體做分析,關於計劃的財務評估則是使用RETScreen模擬軟體,其被廣泛的應用於探討再生能源技術上。
固定傾斜式追日系統及單軸式追日系統為本文探討的兩種追日系統架構。從PVsyst軟體的技術面評估結果得知單軸式追日系統的發電量為1598 MWh,相較於固定傾斜式追日系統的發電量1,270 MWh多了25%的發電量。RETScreen模擬軟體進行的財務評估指標結果指出:固定傾斜式追日系統的内部報酬率為8.9%、投資回收時間為13.2年、效益成本比為1.60;而單軸式追日系統的内部報酬率為13.9%、投資回收時間為10.7年、效益成本比為2.89。財務評估指標的結果說明兩種追日系統皆具有一定的潛力。敏感度分析顯示單軸式追日系統的彈性情境,可以藉由降低電力輸出率及增加初始成本的等改變,使其仍有經濟效益。
摘要(英) The objective of this thesis is to assess the prefeasibility of a photovoltaic (PV) power plant for rural electrification in Honduras to improve the reliability and redundancy of the grid. The proposed location of the power plant is at Alianza, Valle in a region has an average global horizontal irradiation of 6.09 kWh/m2/day; one of the highest irradiance registered in the country. The proposed size of the PV power plant is 720 kWp which is equal to the highest demand by the community in the 20 years lifetime of the project
The assessment is based on the monthly average irradiance data from the Solar and Wind Energy Resource Assessment Program (SWERA). The technical assessment is performed with the software PVsyst, a tool for designing PV systems. The financial assessment of the project is evaluated using the software RETScreen, widely used software for the analysis of renewable energy technologies.
The assessment analyzes two configurations for the tracking system, fixed-tilt and one-axis tracking. The PVsyst results for the technical assessment provide that the one-axis tracking generates an additional 25% electricity output over the fixed-tilt PV, 1598 MWh and 1,270 MWh, respectively. The financial indicators of the fixed-tilt and one-axis tracking PV, provided by the results of the assessment in RETScreen, estimate an internal rate of return of 8.9% and 13.9%, respectively. The equity payback time is calculated at 13.2 years for the fixed-tilt and 10.7 years for the one-axis configuration. The B-C ratio is estimated at 1.60 for the fixed-tilt and at 2.89 for the one axis configuration. These financial indicators suggest profitable conditions for both scenarios. The sensitivity analysis indicate the flexibility of the one-axis tracking scenario, by reducing the electricity export rate and increasing the initial costs, the results still provided profitable financial indicators.
關鍵字(中) ★ 鄉村電氣化
★ 並網型太陽光電電廠
★ 可行性評估
關鍵字(英) ★ Rural electrification
★ PVsyst.
★ RETScreen
★ grid-connected PV
★ feasibility assessment
論文目次 Abstract i
List of Figures vii
List of Tables viii
Acronyms ix
1. Introduction 1
1.1 Background of Honduras 1
1.2 Area of Research 2
1.3 Energy Sector in Honduras 3
1.3.1 Generation of Electricity in Honduras 3
1.3.2 Distribution of Electricity 6
1.3.3 Consumption of Electricity 8
1.3.4 Energy Policies in Honduras 9
1.3.5 Main Issues with Energy Sector 10
1.3.6 Wind Resource in Honduras 11
1.3.7 Solar Resource in Honduras 12
1.3.8 Solar Energy Generation in Honduras 13
1.4 Objectives 15
1.5 Limitations 16
1.6 Thesis Structure 16
2. Literature Review 18
2.1 Rural Electrification 18
2.1.1 Background Information on Electricity Access 18
2.1.2 Rural electrification experiences from around the world 28
2.2 PV System 33
2.3 Grid Connected Systems 34
3. Methodology 39
3.1 Methodology 39
3.2 Selection and Collection of Data 40
3.3 PVsyst Software 41
3.4 RETScreen Software 43
3.5 Feasibility Assessment 46
4. Results and Discussion 48
4.1 Technical Results 48
4.1.1 Location 48
4.1.2 Irradiance and temperature 49
4.1.3 PV Module Selection 49
4.1.4 Inverter 50
4.1.5 Tracking Configuration 51
4.1.6 Electricity Demand 52
4.1.7 Electricity Production 53
4.2 Financial Results 63
4.2.1 Electricity export rate 63
4.2.2 Initial Costs 63
4.2.3 Periodical Costs 64
4.2.4 Financial Viability Results 65
4.2.5 Sensitivity Analysis 68
5. Conclusions and Recommendations 71
5.1 Conclusions 71
5.2 Recommendations 72
References 74
Appendix A: Temperature Data 80
Appendix B: Technical Analysis-Fixed-tilt 720kWp with PVsys 81
Appendix C: Technical Analysis-One-axis 720kWp with PVsyst 84
Appendix D: RETScreen Analysis Worksheets 86

參考文獻 Arias, Eduardo (2011). Prefeasibility Assessment of a Grid-connected Photovoltaic Power Plant in Honduras, Master Thesis, International Environment Sustainable Development, National Central University.
Banco Central de Honduras. Accessed on 12 June, 2015. http://www.bch.hn/
Bhattacharaya, S. (2012). Energy access programmes and sustainable development: A critical review and analysis. Energy for Sustainable Development 12, 2257-2269.
Bhattacharyya, S. (2006). Energy access problem of the poor in India; Is rural electrification a remedy? Energy Policy 34(18), 3387-3397.
Bhattacharyya, S. (2013). Rural Electrification Through Decentralised Off-Grid Systems for Rural Electrification. London: Springer-Verlag.
Canadian Solar Inc. Accessed on 10 June, 2015. http://investors.canadiansolar.com/phoenix. zhtml?c=196781&p=irol-newsArticle &ID=1977764.
Castillo, G., personal communication, May 28, 2015.
Chuarey, A., & Kandpal, T. (2010). Assessment and evaluation of PV based decentralized rural electrification: An overview. Renewable and Sustainable Energy Reviews 14, 2266-2278.
CIA. Accessed on 12 June, 2015. https://www.cia.gov/library/publications/resources/the-world-factbook/ geos/ho.html.
CNE. (2014). Dictamen 001-2014. La Gaceta.
Comision Nacional de Energia. Accessed on 12 of June, 2015. http://www.cne.gob.hn/ estadisticas/costomarginal
Congreso Nacional. (2013). Decreto No. 138-2013. La Gaceta.
Connolly, D., Lund, H., Mathiesen, B., & Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy 87, 1059-1082.
Cook, P. (2011). Infrastructure, rural electrification and development. Energy for Sustainable Development 15, 304-313.
Dimroth, D. F. Accessed on May 26, 2015, http://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2014/ new-world-record-for-solar-cell-efficiency-at-46-percent
Domenech, B., Ferrer-Marti, L., Lillo, P., Pastor, R., & Chiroque, J. (2014). A community electrifiction project: Combination of microgirds and household systems fed by wind, PV or microhydro energies according to micro-scale resource evaluation and social constraints. Energy for Sustainable Development 23, 275-285.
Duffie, J., & Beckman, W. (1991). Solar Engineering of Thermal Processes. John Wiley & Sons.
Eberherd, A., Rosnes, O., Shkaratan, M., & Vennemo, H. (2011). Africa′s power infrastructure: Investment, integration, efficiency. Washington, D.C.: World Bank.
Eke, R., & Senturk, A. (2012). Performance comparison of a double-axis sun tracking versus fixed PV system. Solar Energy 86, 2665-2672.
Eltawil, M., & Zhao, Z. (2010). Grid-connected photovoltaic power systems technical and potentail problems- A review. Renewable and Sustainable Energy Reviews 14, 112-129.
ENEE. (2014). Informe de Consumo por Sectores y Sistemas. Tegucigalpa.
Energy Trend. Accessed on 24 of June, 2015. http://pv.energytrend.com/pricequotes.html
Equipo Consultores Plus Energy, D. M. (2013). Modelos de Mercado, Regulacion Economica y Tarifas del Sector Electrico en America Latina y el Caribe- Honduras. Organizacion Latinoamericana de Energia.
Flores, W., Ojeda, O., Flores, M., & Rivas, F. (2010). Sustainable energy policy in Honduras: Diagnosis and challenges. Energy Policy 39, 551-562.
Fraunhofer Institute for Solar Energy Systems ISE. Accessed on 26 of May, 2015. http://www.ise.fraunhofer.de/en/downloads-englisch/pdf-files-englisch/photovoltaics-report-slides.pdf
Gomez, V., & Montero, M. (2010). Rural electrification systems based on renewable energy: The social dimensions of an innovative technology. Technology in Society 32, 303-311.
Hajiseyed, A., & Taheri, T. (2012). Environmental, technical and financial feasibility study of solar power plants by RETScreen, according to the targeting of energy subsidies in Iran. Renewable and Sustainable Energy Reviews 16, 2806-2811.
Heslop, S., & MacGill, I. (2014). Comparative analysis of the variability of fixed and tracking photovoltaic systems. Solar Energy 107, 351-364.
IEA. (2011). Energy for all: Financing access for the poor, special early excerpt of the world energy outlook. Paris: International Energy Agency.
IEA-PVPS. (2014). Trends 2014 in Photovoltaic Applications. International Energy Agency.
IEG-World Bank. (2008). The Welfare Impact of Rural Electrification: A Reassessment of the Costs and Benefits. Washington, D.C.: Independent Evaluation Group.
Javadi, F., Rismanchi, B., Sarraf, M., Afshar, O., Saidur, R., Ping, H., et al. (2013). Global policy of rural electrification. Renewable and Sustainable Energy Reviews 19, 402-416.
Khalid, A., & Junaidi, H. (2013). Study of economic viability of photovoltaic electric power for Quetta-Pakistan. Renewable Energy 50, 235-258.
Kuandinya, D., Balachandra, P., & Ravinadranath, N. (2009). Grid-connected versus stand-alone systems for decentralized power-a literature review. Renewable and Sustainable Energy Reviews 13(8), 2041-2050.
Kurokowa, K. (2003). Energy From the Desert: Feasibility of Very Large Scale Photovolatic Power Generation Systems. London: James&James.
La Tribuna. (2015, May 6). Gobierno inaugura Parque de Energia Solar en Nacaome, Valle. La Tribuna.
Lopez, R. personal communication, June 06, 2016.
Mahapatra, S., & Dasappa, S. (2012). Rural electrification: Optimising the choice between decentralised renewable energy sources and grid extension. Energy for Sustainable Development 16, 146-154.
Mainali, B., & Semida, S. (2013). Alternative pathways for providing access to electricity in developing countries. Renewable Energy 57, 299-310.
Minogue, M. (2013). Regulatory Governance of Off-Grid Electrification. In S. Bhattacharaya, Rural Electrification Through Decentralised Off-Grid Systems in Developing Countries (pp. 253-268). London: Springer-Verlag.
Mondal, A., & Islam, S. (2011). Potential and viability of grid-connected solar PV system in Bangladesh. Renewable Energy 36, 1869-1874.
Nerini, F., Howells, M., Bazilian, M., & Gomez, M. (2014). Rural electrification options in the Brazilian Amazon: A multi-criteria analysis. Energy policy for Sustaianble Development 20, 36-48.
Niez, A. (2010). Comparative Study in Rural Electrification Policies in Emerging Economies. Paris: IEA.
Pathak, B., & Srivastava, N. (2006). Biomass based decentralized power generation. Sardar Patel Renewable Energy Research Institute.
Peerpong, P., & Limmeechokchai, B. (2014). Invetment incentive of grid-connected solar photovoltaic power plant under proposed feed-in tariffs framework in Thailand. Energy Procedia 52, 179-189.
Perez, O. personal communication,12 of June, 2015.
Perez, R., & Kmiecik, M. (2003). Production of High Resolution Irradiance Data for Central America and Cuba. UNEP SWERA.
Phuangpornpitak, N., & Kumar, S. (2007). PV hybrid systems for rural electrification in Thailand. Renewable and Sustainable Energy Reviews 11, 1530-1543.
Pillai, G., Putrus, G., Georgitsioti, T., & Pearsall, N. (2014). Near-term economic benefits from grid-connected residential PV systems. Energy 68, 832-843.
PV Magazine. (2010, March 20). www.pv-magazine.com. Retrieved June 27, 2015, from www.pv-magazine.com: http://www.pv-magazine.com/archive/articles/beitrag/a-market-in-movement_100001088/#axzz3eMiBhxZ2
PVinsights. Accessed on 15 of June, 2015. http://pvinsights.com/RetailerPrice.php
PVsyst Photovoltaic Software. Accessed on 13 of May, 2015. http://www.pvsyst.com/en/
Rahman, M., Paatero, J., & Lahdelma, R. (2013). Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach. Energy Policy 59, 589-599.
S.R. Wenham, M. G. (2007). Applied Photovoltaics. London: Earthscan.
ScottMadden. (2010). Solar Photovoltaic Plant Operating and Maintenance Costs. ScottMadden.
Silva, D., & Nakata, T. (2009). Multi-objective assessment of rural electrification in remote areas with poverty considerations. Energy Policy 37(8), 3096-3108.
Singh, G. (2013). Solar power generation by PV technology - A review. Energy 53, 1-13.
SMA. (2010). Performance ratio: Quality factor for the PV plant. SMA.
Solar Plaza. Accessed on 26 of May, 2015. http://www.solarplaza.com/top10-crystalline-module-efficiency/
Sundaram, S., & Chandra, J. (2015). Performance evaluation and validation of a 5 MWp grid connected solar photovoltaic plant in South India. Energy Conversion and Management 100, 429-439.
SWERA. (2003). (2003).Accessed on 12 of June, 2015. ,http://maps.nrel.gov/swera
Tarigan, E., Djuwari, & Kartikasari, F. D. (2015). Techno-Economic Simulation of a Grid-Connected PV System Design as Specifically Applied to Residential in Surabaya, Indonesia. Energy Procedia 65, 90-99.
UN DESA. (2014). A Survey of International Activities in Rural Energy Access and Electrification. United Nations.

指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2015-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明