博碩士論文 102225017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.117.230.238
姓名 李宜馨(Yi-hsin Li)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 具共變數韋能衰退隨機過程之經驗貝氏可靠度分析
(An Empirical Bayesian Reliability Analysis of Degradation Test Based on Wiener Process with Covariates)
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 逆高斯過程之完整貝氏衰變分析
★ 加速不變原則之偏斜-t過程★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文考慮具共變數韋能衰退隨機過程之貝氏可靠度分析, 其中漂移係數為共變數之線性函數。實務上同款產品的衰退特徵可能存在個別差異, 並不適合用同一模型來描述所有個體, 因此我們以三種不同的模型, 在共同的先驗分配下, 分別經由馬可夫鏈蒙地卡羅方法(MCMC) 進行貝氏可靠度推論。另一方面當主觀先驗資訊微弱或無法確認資料來源的真實模型時, 我們先經由觀測資料估計具個別差異之模型中參數的先驗分配建立經驗貝氏模型, 模擬結果驗証經驗貝氏方法可在模型不確定時取其折衷進而降低選模錯誤的風險。也就是說, 在先驗資訊不足或不確定產品間是否有差異, 經驗貝氏模型可提供較穩健的可靠度推論。
摘要(英) For high reliability products, the degradation test can provide more information than accelerated life test to assess the lifetime distribution. In this thesis, we consider the degradation test based on Wiener processes in which the drift coefficient is linear in the covariates. In practice, there may have unit-to-unit variantion of the products with the same type. Therefore, it may not be appropriate using the same model to fit all products. Here, we aim on the Bayesian approach with three difference models. Empirical Bayes methods are used to determine the prior parameters using all the observed data. It not only provides a compromise in the model uncertainty with the advantage of ”borrowing the strength” among the data, but also solve the situation when the prior information is vague. Further, we are interest in reliability inference under given covariates. Simulation study shows that the empirical Baysian method can reduce the risk for fitting wrong models and yield robust reliability inference.
關鍵字(中) ★ 衰退試驗
★ 韋能隨機過程
★ 馬可夫鏈蒙地卡羅方法
★ 貝氏方法
★ 經驗貝氏
關鍵字(英) ★ degradation test
★ Wiener process
★ Markov chain Monte Carlo
★ Bayesian approach
★ empirical Bayes
論文目次 摘要i
Abstract ii
誌謝iii
目錄iv
圖目次vi
表目次vii
第一章緒論1
1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
第二章具共變數韋能衰退隨機過程之貝氏可靠度分析7
2.1 韋能衰退隨機過程與失效時間. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 具共變數之韋能隨機過程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 具個別差異性之高維度模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 具部分差異性之折衷模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 無個別差異之低維度模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 產品失效時間之貝氏推論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
第三章經驗貝氏模型17
3.1 經驗貝氏方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 EM演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 共軛性估計法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
第四章模擬研究24
4.1 具個別差異性之高維度模型資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 具部分差異性之折衷模型資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 無個別差異之低維度模型資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 穩健性分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 案例分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
第五章結論與展望50
參考文獻51
參考文獻 [1] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second Edition), Springer-Verlag, New York.
[2] Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39, 83–87.
[3] Chhikara, R. S. and Folks, J. L. (1989). The Inverse Gaussian Distribution.Theory,Methodology and Applications, Marcel Dekker, New York.
[4] Carlin, B. P. and Louis, T. A. (2000). Bayes and Eempirical Bayes Methods for Data Analysis, Chapman and Hall, New York.
[5] Doksum, K. A. and Hoyland, A. (1992). Models for variable-stress accelerated life testing experiments based on Wiener process and the inverse Gaussian distribution. Technometrics, 34, 74–82.
[6] Efron, B. (1979). Bootstrap method: another look at the jacknife. Annals of Statist , 17, 1–2682.
[7] Fan, T. H. and Wang, Y. F. (2013). An empirical Bayesian forecast in the threshold stochastic volatility models. Journal of Statistical Computation and Simulation, 83, 486–500.
[8] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.
[9] Hong, Y., Duan, Y., Meeker, W. Q., Stanley, D. L., and Gu, X. (2014). Statistical methods for degradation data with dynamic covariates information and an application to outdoor weathering data. To appear in Technometrics, p. DOI:10.1080/00401706.2014.915891.
[10] Hu, C. H., Lee, M. Y., and Tang, J. (2015). Optimum step-stress accelerated degradation test for Wiener degradation process under constraints. European Journal of Operational Research, 241, 412–421.
[11] Jin, G., Matthews, D. E., and Zhou, Z. (2013). A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft. Reliability Engineering and System Safety, 113, 7–20.
[12] Lawless, J. F. and Crowder, M. (2004). Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Analysis, 10, 213–227.
[13] Liao, C. M. and Tseng, S. T. (2006). Optimal design for step-stress accelerated degradation test. IEEE Transactions on Reliability, 55, 59–66.
[14] Ling, M. H., Tsui, K. L., and Balarkrishnan, N. (2015). Accelerated degradation analysis for the quality of a system based on the gamma process. IEEE Transactions on Reliability, 64, 463–472.
[15] Morris, C. N. (1983). Parametric empirical Bayes inference: theory and applications. Journal of the American Statistical Association, 78, 47–65.
[16] Morris, C. N. (1983). Natural exponential families with quadratic variance functions: statistical theory. Annals of Statistics, 11, 515–529.
[17] Meeker, W. Q. and Escobar, L. A. (1993). A review of recent research current issues in accelerated testing. International Statistical Review, 61, 147–168.
[18] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data, Wiley, New York.
[19] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis, John Wiley & Sons, New York.
[20] Pettit, L. I. and Young, K. D. S. (1999). Bayesian analysis for inverse Gaussian lifetime data with measures of degradation. Journal of Statistical Computation and Simulation, 63, 217–234.
[21] Padgeet, W. and Tomlinson, M. A. (2004). Inference from accelerated degradation and failure data based on Gaussian process models. Lifetime Data Analysis, 10, 191–206.
[22] Park, C. and Padgett, W. J. (2005). Accelerated degradation models for failure based on geometric Brownian motion and gamma processes. Lifetime Data Analysis, 11, 511–527.
[23] Pan, Z. and Balarkrishnan, N. (2011). Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliability Engineering and System Safety, 96, 949–957.
[24] Robbins, H. (1956). An empirical Bayes approach to statistics. In Proceeding Third Berkeley Symp.Mathematical Statistics and Probability, 1, 157–164.
[25] Robinson, M. E. and Crowder, M. J. (2000). Bayesian methods for growth-curve degradation model with repeated measures. Lifetime Data Analysis, 6, 357–374.
[26] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of Royal Statistical Society,Series B, 64, 583–639.
[27] Tseng, S. T. and Peng, C. Y. (2004). Optimal burn-in policy by using an integrated Wiener process. IEEE Transactions on Reliability, 36, 1161–1170.
[28] Touw, A. E. (2009). Bayesian estimation of mixed Weibull distributions. Reliability Engineering and System Safety, 94, 463–473.
[29] Whitmore, G. A. (1995). Estimating degradation by a Wiener diffusion process subject to measurement error. Lifetime Data Analysis, 1, 307–319.
[30] Whitmore, G. A. and Schenkelberg, F. (1997). Modeling accelerated degradation data using Wiener diffusion with a scale transformation. Lifetime Data Analysis, 3, 27–45.
指導教授 樊采虹 審核日期 2015-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明