博碩士論文 101521037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.138.119.68
姓名 李孟翰(Meng-han Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多相位微波及毫米波低相位雜訊 時脈產生器之研製
(Multi-phase Microwave and Millimeter-wave Low Phase Noise Clock Generators)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是針對多相位微波及毫米波低相位雜訊訊號源積體電路的研製。首先,使用台積電0.18 μm互補式金屬氧化物半導體製程實現一個應用在2.5 GHz的多相位時脈產生器,藉由壓控延遲迴路及相位補償電路,使得輸出的相位誤差可以進一步改善。八相位時脈產生器操作頻寬為1.8 ~ 3 GHz,當輸入信號為2.5 GHz時,其輸出的最大相位誤差為2.67°,且在偏移中心頻1 kHz~40 MHz的範圍內此電路最高累計之抖動量約為627.2 fs,電路直流消耗為39.6 mW,晶片面積為0.65×0.65 mm2。
第三章提出一個應用於W頻段的高功率疊接差動壓控振盪器(VCO),使用台積電90 nm 互補式金屬氧化物半導體製程設計和實現。為了確保疊接壓控振盪器為差動輸出
,因此可將壓控振盪器拆成等效奇模態電路和偶模態電路,在奇模態下電路必須滿足振盪條件,而偶模態電路則不會。量測輸出功率和直流轉換效率分別達到3.3 dBm和2.8%,振盪頻率可從93.6到98.7 GHz。並且使用了Q值增強架構來降低相位雜訊,相位雜訊在1 MHz頻率偏移時為-101.1 dBc/Hz,晶片面積為0.45×0.45 mm2。進一步利用此W頻段差動振盪器延生設計一個W頻段四相位振盪器,經由四個反射式的調變器將四個輸出相位整合成一個輸出,以便於W頻段四相位輸出的量測,並且對其有詳細的分析討論及模擬結果。此W頻段四相位振盪器,模擬的相位雜訊在1 MHz頻率偏移時為-93 dBc/Hz,而相位誤差與振幅誤差分別為2.37°與0.048 dB。
第四章使用延遲鎖定迴路自我對準注入的技術,實現兩個次諧波(N=16)注入鎖定鎖相迴路次諧波數(N)分別為8與16。為了進一步增加次諧波注入振盪器的鎖定頻寬,設計一個N=8的次諧波注入鎖定鎖相迴路,其模擬鎖定頻寬為59 MHz,模擬相位偵測器及迴路濾波器,最高操作頻率為312.5 MHz。N=16次諧波注入鎖定鎖相迴路量測結果在操作頻率為2.4 GHz及偏移中心頻為1 MHz時,量測相位雜訊為-124.9 dBc/Hz ,均方根值(rms)抖動為193.2 fs。最後,在第五章總結此篇論文的研究成果。
摘要(英) Design and analysis of multi-phase low phase noise microwave and millimeter-wave signal source intergrated circuits is presented in this thesis. A 2.5-GHz Multi-phase clock generator using a 0.18-μm CMOS process is presented in chapter 2. By utilizing a delay-locked loop (DLL) and a phase interpolator (PI), the phase accuracy of the multi-phase clock generator can be further enhanced. The bandwidth of the multi-phase clock generator is from 1.8 GHz to 3 GHz. The measured maximum phase error is 2.67°and the measured rms jitter intergrted from 1kHz to 40 MHz is 627.2 fs when the operating frequency is 2.5 GHz. The total dc power consumption is 39.6 mW. The chip size is 0.65×0.65 mm2.
A W-band high output power differential cascode voltage-controlled oscillator (VCO) using TSMC 90 nm CMOS process is presented in Chapter 3. To ensure the differential operation for the cascode VCO, the even- and odd-mode analysis is adopted in the circuit design. The proposed VCO exhibits a maximum output power of 3.3 dBm, and a maximum efficiency of 2.8 %. The measured tuning range is from 93.6 to 98.7 GHz. Also, the Q-enhancement technique is introduced to reduce the phase noise. The measured phase noise is -101.1 dBc/Hz at 1-MHz offset. The chip size is 0.45×0.45 mm2. Based on the differential cascode VCO topology, an innovative quadrature cascode VCO is proposed . The simulated phase noise is -93 dBc/Hz at 1-MHz offset and the simulated phase error and amplitude error are 2.37° and 0.048 dB.
A 2.5-GHz Subharmonically Injection-locked PLL with DLL self-aligned injection using 0.18-μm CMOS technology is presented in Chapter 4. To further increase the locking rang of sub-harmonically injection-locked VCO, two SILPLLs with sub-harmonically numbers(N) of 8 and 16 is proposed. The simulated locking range of SILVCO with N=8 is 59 MHz, and Phase Frequency Detector and loop filter are also presimulated with reference frequency of up to 312.5 GHz. As the operation frequency is 2.4 GHz, the measured phase noise of the proposed SILPLL with N=16 is -124.9 dBc/Hz at 1 MHz offset with a rms jitter of 193.2 fs. Finally, we summarize the conclusion in Chapter 5.
關鍵字(中) ★ 多相位時脈產生器
★ 微波及毫米波時脈產生器
★ 低相位雜訊時脈產生器
關鍵字(英) ★ Multi-phase Clock Generators
★ Microwave and Millimeter-wave Clock Generators
★ Low Phase Noise Clock Generators
論文目次 摘要 VI
ABSTRACT VII
誌謝 IX
目錄 X
圖目錄 XIII
表目錄 XX
第一章 緒論 1
1.1 研究動機與背景 1
1.2 研究發展及現況 1
1.3 貢獻 3
1.4 論文架構 4
第二章 2.5 GHZ多相位時脈產生器 6
2.1 簡介 6
2.2 多相位時脈產生器架構整理 7
2.3 延遲鎖定迴路架構介紹 8
2.4 延遲鎖定迴路理論分析 9
2.4.1 迴路穩定度分析[13]-[14] 9
2.4.2 迴路相位雜訊抖動分析 14
2.5 電路設計與分析 19
2.5.1 延遲鎖定迴路 19
2.5.2 壓控延遲單元 20
2.5.3 相位補償電路 22
2.5.4 全電路系統模擬結果 24
2.6 量測結果與討論 26
2.7 結論 32
第三章 W頻段高功率多相位壓控振盪器 33
3.1 簡介 33
3.2 電路架構設計與分析 34
3.2.1 Q值增強架構簡介 35
3.2.2 電路小訊號模型轉移函數與等效Q值推導 37
3.2.3 W頻段差動壓控振盪器電路簡介 44
3.2.4 迴授網路分析 46
3.3 電路實現與量測結果討論 53
3.4 結論 60
3.5 W頻段四相位高功率壓控振盪器 62
3.5.1 四相位壓控振盪器簡介 62
3.5.2 W頻段四相位高功率壓控振盪器架構介紹 65
3.5.3 反射式調變器設計[43]-[44] 69
3.5.4 交互耦合路徑設計 73
3.5.5 W頻段四相位高功率壓控振盪器佈局與模擬結果 75
3.5.6 W頻段四相位高功率壓控振盪器量測考量 79
第四章 2.5 GHZ具自我校正功能之注入鎖定鎖相迴路 82
4.1 鎖相迴路簡介 82
4.1.1 簡介 82
4.1.2 鎖相迴路基本架構 82
電壓控制振盪器 82
除頻器Frequency Divider 83
相位頻率偵測器Phase Frequency Detector/Phase Detector & Charge Pump 85
迴路濾波器與迴路分析 85
4.1.3 次諧波注入鎖相迴路簡介 89
4.2 電路架構設計與分析 (N=16) 92
4.2.1 次諧波注入鎖定振盪器 93
4.2.2 壓控延遲線 94
4.2.3 TSPC除頻器 95
4.2.4 相位頻率偵測器 96
4.2.5 脈衝時脈產生器 98
4.2.6 SILPLL系統模擬結果 98
4.3 2.5 GHZ SILPLL 除八(N=8)設計與分析 100
4.4 電路實現與量測結果討論 106
4.5 結論 113
第五章 結論 114
參考文獻 116
參考文獻 參考文獻
[1] C. Marcu et al., “A 90 nm CMOS low-power 60 GHz transceiver with integrated baseband circuitry,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3434–3447, Dec. 2009.
[2] M. Tabesh et al., “A 65 nm CMOS 4-element sub-34 mW/element 60 GHz phased-array transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3018–3032, Dec. 2011.
[3] J. Lee, Y.-A Li, M.-H. Hung, and S.-J. Huang, “A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2746–2756, Dec. 2010.
[4] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeterwave frequency synthesizer for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681,Dec. 2010.
[6] A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, and A. Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar for imaging and gesture recognition,” IEEE Int. Symp. on VLSI Design, Automation and Test, Jun. 2012, pp. 56-57.
[7] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[8] N. Khan, M. Hossain, and K. L. E. Law, "A Low Power Frequency Synthesizer for 60-GHz Wireless Personal Area Networks," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, pp. 622-626, 2011.
[9] L. Chihun, C. Lan-Cho, L. Shen-Iuan, K. Chun-Lin, Y. Z. Juang, and C. Chin-Fong, "A 1.2V 37-38.5GHz 8-Phase Clock Generator in 0.13/spl mu/ m CMOS Technology," IEEE Int. Symp. on VLSI Design, Automation and Test, Jun.2006, pp. 27-28,.
[10] T. Toifl, C. Menolfi, P. Buchmann, M. Kossel, T. Morf, R. Reutemann, M. Ruegg, M. Schmatz, and J. Weiss, "0.94ps-rms-jitter 0.016mm 2.5GHz multi-phase generator PLL with 360°; digitally programmable phase shift for 10Gb/s serial links," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Sept.2005, pp. 410-607.
[11] Y. Xiaochen and L. Jin, "An open-loop 10GHz 8-phase clock generator in 65nm CMOS," in Proc. IEEE Custom Integr. Circuit Conf., Sept , pp. 1-4. 2011.
[12] K. Yamguchi, M. Fukaishi, T. Sakamoto, N. Akiyama, and K. Nakamura, "2.5 GHz 4-phase clock generator with scalable and no feedback loop architecture," in proc. Int. Solid-State Circuits Conf.,2001, pp. 398-399.
[13] 涂祐豪,“具高頻操作及自我向為校正之延遲鎖定迴路與頻率倍頻器”,民國99年10月。
[14] 吳孟哲,“寬頻操作為基礎之靜態相位誤差校正延遲鎖定迴路”,民國97年1月。
[15] 葉彥良,“應用於為波及毫米波鎖相迴路之金氧半場效電晶體注入鎖定振盪器研究”,民國102年6月。
[16] B. M. Helal, M. Z. Straayer, G.-Y. Wei, and M. H. Perrott, “A highly digital MDLL-based clock multiplier that leverages a self-scrambling time-to-digital converter to achieve subpicosecond jitter performance,” IEEE J. Solid-State Circuits, vol. 43, pp. 855-863, Apr. 2008.
[17] F.-R. Liao and S.-S. Lu, "A programmable edge-combining DLL with a current-splitting charge pump for spur suppression,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, pp. 946-950, Dec. 2010.
[18] J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[19] J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414–1426, June 2008.
[20] K.-H Tsai and S.-L Liu, “A 43.7mW 96GHz PLL in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 276–277.
[21] B. Razavi, Design of analog CMOS integrated circuits, New York: McGraw-Hill, 2001, ch. 2.
[22] Brian Welch and Ullrich Pfeiffer, “A 17 dBm 64 GHz Voltage Controlled Oscillator with Power Amplifier in a 0.13 μm SiGe BiCMOS Technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., pp. 4, June. 2006.
[23] J. Lin, Y. K. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, Al Tate, R. F. Kopf, and R. W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO′s in CPW structure,” IEEE Microw. Guided Wave Lett., vol. 5, no. 11, pp. 379-381, Nov. 1995.
[24] L. Zhang, R. Pullela, C. Winczewski, J. Chow, D. Mensa, S. Jaganathan, and R. Yu, “A 37 ~ 50 GHz InP HBT VCO IC for OC-768 fiber optic communication applications,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., June, 2002, pp. 85-88.
[25] H. Li and H. M. Rein, “Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 184-191, Feb. 2003.
[26] C. Cao and K. K. O, “Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41,no. 6, pp. 1297–1304, Jun. 2006.
[27] K. Ishibashi, M. Motoyoshi, N. Kobayashi, and M. Fujishima, “76 GHz CMOS voltage-controlled oscillator with 7% frequency tuning range,” IEEE Int. Symp. on VLSI Design, Automation and Test, 2007, pp. 176–177.
[28] C. Cao and K. K. O, “A 140-GHz fundamental mode voltage-controlled oscillator in 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 555–557, Oct. 2006.
[29] Z. M. Tsai, C. S. Lin, C. F. Huang, J. G. J. Chern, and H. Wang,“A fundamental 90-GHz CMOS VCO using new ring-coupled quad,”IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 226–228, Mar.2007.
[30] E. Socher and S. Jameson, "Wide tuning range W-band Colpitts VCO in 90 nm CMOS," Electron. Lett., vol. 47, pp. 1227-1229, 2011.
[31] Vishal P. Trivedi, Kun-Hin To and W.Margaret Huang, “A 77GHz CMOS VCO with 11.3GHz Tuning Range, 6dBm Output Power, and Competitive Phase Noise in 65nm Bulk CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., pp.1-4, Jun. 2011.
[32] Plouchart J.-O., Ferriss Mark, Sadhu Bodhisatwa, Sanduleanu Mihai, Parker Benjamin and Reynolds ScottRose, “A 73.9–83.5GHz synthesizer with -111dBc/Hz phase noise at 10MHz offset in a 130nm SiGe BiCMOS technology ,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., PP.123-126, June. 2013.
[33] Jongsuk Lee, Yong Moon "A W-band VCO using center-tapped basic inductor in 65nm CMOS," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Nov. 2013, pp.17-19.
[34] Shu-Wei Chu and Chorng-Kuang Wang., “An 80 GHz Wide Tuning Range Push-Push VCO With gm-Boosted Full-Wave Rectification Technique in 90 nm CMOS,” IEEE Microw.Wireless Compon. Lett., Vol. 22,pp.203-205, April. 2012.
[35] Tsai, Z.-M., Lin, C.-S., Huang, C.F., Chern, J.G.J., and Wang, H.: ‘A fundamental 90-GHz CMOS VCO using new ring-coupled quad’, IEEE Microw. Wirel. Compon. Lett., 2007, 17, (3), pp. 226–228.
[36] S. Asgaran and M. J. Deen, “A novel gain boosting technique for design of low power narrow-band RF CMOS LNAs,” in Proc. 2nd Annu. IEEE Northeast Circuits Syst. Workshop, pp. 293–296, Feb. 2004,.
[37] Bonghyuk Park, “A 12-GHz fully integrated cascode CMOS LC VCO with Q-enhancement circuit,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 2, pp. 133-135, Feb. 2008,.
[38] 邱恒達,“低功耗低相位雜訊差動及四相位單經微波積體電路壓控振盪器之研究”,民國100年6月。
[39] 李文賓,“高功率高效率振盪器研製”,國立中央大學電機工程研究所碩士論文,民國100年7月。
[40] Hong-Yeh Chang, Yi Shou Wu, and Yu-Chi Wang, ”A 38% tuning bandwidth low phase noise differential voltage controlled oscillator using a 0.5 μm E/D-PHEMT process,” IEEE Microwave and Wireless Component Letters, vol. 19, no. 7, pp. 467-496, July 2009.
[41] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[42] C.-T. Lu, H.-H. Hsieh, and L.-H. Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 57, no. 4, pp. 793–802, Apr. 2010.
[43] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C. L. Chang, and J. Chern, “design and analysis of CMOS broad-band compact high-linearity modulators for Gigabit microwave/millimeter-wave application,” IEEE Trans. on Microwave Theory and Tech., pp. 20-30, Feb. 2006.
[44] H.-Y. Chang, Y.-H. Cho, M.-F. Lei, C.-S. Lin, T.-W. Huang, and H. Wang, “A 45-GHz quadrature voltage controlled oscillator with a reflection-type IQ modulator in 0.13-um CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2006, pp. 739-742.
[45] T.-H. Lin and W. J. Kaiser, “A 900-MHz, 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 424–431, Mar. 2001.
[46] R. R.-B. Sheen, and O. T.-C Chen, “A CMOS PLL-based frequency synthesizer for wireless communication systems at 0.9, 1.8, 1.9 and 2.4-GHz,” 2001 IEEE International Symposium on Circuits and Systems Digest, vol. 4, pp. 722−725, 2000.
[47] Y. Sumi, and et al., “A new PLL frequency synthesizer using multi-programmable divider,” IEEE Transaction on Consumer Electrics, vol. 44, pp. 827−832, Aug. 1998.
[48] G.-Y. Tak, and et al., “A 6.3-9-GHz CMOS fast settling PLL for MB-OFDM UWB applications,” IEEE J. Solid-State Circuit, vol. 40, pp. 1671−1679, Aug. 2005.
[49] J. M. Ingino and V. R. von Kaenel, “A 4-GHz clock system for a high-performance system-on-a-chip design,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1693–1698, Nov. 2001.
[50] S. Steson, R.B. Brown, “A complementary GaAs PLL clock multiplier with wide-bandwidth and low-voltage operation,” 1996 Gallium Arsenide Integrated Circuit (GaAs IC) Symposium Digest, pp. 317–320.
[51] J. Hu and B. Otis, “A 3-μW, 400-MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90nm CMOS,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., pp. 665–668, 2008.
[52] U. Singh, and M. M. Green, “High-frequency CML clock dividers in 0.13-μm CMOS operating up to 38-GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658–1661, Aug. 2005.
[53] W. O. Keese, “An analysis and performance evaluation of a passive filter design technique for charge pump phase-locked loops,” National Semiconductor Application Note, no. 1001, May 1996.
[54] 劉深淵,楊清淵, “鎖相迴路”, 民國97年2月.
[55] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1606-1617, Jul. 2011.
[56] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-μm CMOS”, IEEE J. Solid-State Circuits, vol. 39, no. 11, pp.
[57] Z. Xu, Q. J. Gu, Y.-C. Wu, H.-Y. Jian and M.-C. F. Chang, “A70-78 integrated CMOS frequency synthesizer foe W-band satellite communications,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3206-3218, Dec. 2011.
[58] S. Hackl, J. Bock, G. Ritzberger, M. Wurzer, and A. L. Scholtz, “A 28-GHz monolithic integrated quadrature oscillator in SiGe Bipolar Technology,” IEEE J.Solid-State Circuits, vol. 38, no. 1, pp. 135-137, Jan. 2003.
[59] B. M. Helal, M. Z. Straayer, G.-Y. Wei, and M. H. Perrott, “A highly digital MDLL-based clock multiplier that leverages a self-scrambling time-to-digital converter to achieve subpicosecond jitter performance,” IEEE J. Solid-StateCircuits, vol. 43, pp. 855-863, Apr. 2008.
[60] X. Gao, E. A. M. Klumperink, M. Bohsali, and B. Nauta, “A 2.2 GHz 7.6 mW sub-sampling PLL with -126 dBc/Hz in-band phase noise and 0.15 psrms jitter in0.18 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 392-393,Feb. 2009.
[61] T. A. Ali, A. A. Hafez, R. Frost, R. Ho, and C.-K. K. Yang, “A 4.6 GHz MDLL with -46 dBc reference spur and aperture position tuning,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 466-468, Feb. 2011.
[62] R. Farjad-rad, W. Dally, H. Mg, J. Poulton, T. Stone, R. Rathi, E. Lee, D. Huang, and R. Nathan, “A 0.2-2 GHz 12 mW multiplying DLL for low-jitter clock synthesis in highly-integrated data communication chips,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 56-57, Feb. 2002.
[63] Y.-C. Huang and S.-I. Liu, “A 2.4 GHz sub-harmonically injection-locked PLLwith self-calibrated injection timing,” IEEE J. Solid-State Circuits, vol. 48, no. 2,pp. 417-428, Dec. 2013.
[64] C. F. Liang and K. J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 90-92, Feb.2011.
[65] H. Kondoh et al, “A 1.5-V 250-MHz to 3.0-V 622-MHz operation CMOS phase-locked loop with precharge type phase-frequency dector,” IEICE Trans.Electron, vol. E78-C, no. 4, pp. 381-388, Apr. 1995.
[66] J. Lee, and H. Wang, “Study of subharmonically injection-locked PLLs,” IEEE J.Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009
[67] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009.
[68] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Transactions on Circuit and System II, Exp. Briefs, vol. 56, no. 2, pp. 117-121, Feb. 2009.
[69] Belal M. Helal, Matthew Z. Straayer, Gu-Yeon Wei, and Michael H. Perrott, “A Highly Digital MDLL-Based Clock Multiplier That Leverages a Self-Scrambling Time-to-Digital Converter to Achieve Subpicosecond Jitter Performance,” IEEE Journal of Solid-State Circuits, vol. 43, no. 4, Apr. 2008.
[70] Akihide Sai, Takafumi Yamaji, Tetsuro Itakura, “A 570fsrms Integrated-Jitter Ring-VCO-Based 1.21GHz PLL with Hybrid Loop,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 5, no. 6, pp. 98–99, Feb. 2011.
[71] Belal M. Helal, Chun-Ming Hsu, Kerwin Johnson,and Michael H. Perrott, “A Low Jitter Programmable Clock Multiplier Based on a Pulse Injection-Locked Oscillator With a Highly-Digital Tuning Loop,” IEEE J. Solid-State Circuits, vol. 44, no. 5, May. 2009.
[72] Kyoungho Woo, Yong Liu, Eunsoo Nam, and Donhee Ham, “Fast-Lock Hybrid PLL Combining Fractional-N and Integer-N Modes of Differing Bandwidths,” IEEE Journal of Solid-State Circuits, vol. 43, no. 2, Feb. 2008.
[73] Yi-Chieh Huang, Shen-Iuan Liu, “A 2.4GHz Sub-Harmonically Injection-Locked PLL With Self-Calibrated Injection Timing,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 19, no. 8, pp. 338–339, Feb. 2012.
[74] Venumadhav Bhagavatula, and Jacques C. Rudell, “Analysis and design of a transformer-feedbackbased wideband receiver,” IEEE Mircow. Wireless Compon. Lett., vol. 61, no. 03, pp. 1347-1358, March 2013.
[75] Hui Zheng and Howard C. Luong, “Ultra-low-voltage 20-GHz frequency dividers using transformer feedback in 0.18-um CMOS Process,” IEEE J. Solid-State Circuits, vol. 43, no. 10, pp. 2293-2302, Oct. 2008.
[76] K. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
[77] B. Razavi, RF Microelectronics, Prentice Hall, 1998.
[78] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Oxford, New York, pp. 1112-1113, 1998.
[79] F. Maloberti and M. Signorelli, “Quadrature waveform generator with enhanced performances”, Symposium on VLSI Circuits Digest of Technical Papers, pp. 56-57, 1998.
[80] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, June 1996.
[81] A. Rofougaran, G. Chang, J. J. Rael, J. Y.-C. Chang, M. Rofougaran, P. J. Chang, M. Djafari, J. Min, E. W. Roth, A. A. Abidi, and H. Samueli, “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS—Part I: Architecture and transmitter design,” IEEE J. Solid-State Circuits, vol. 33, no. 4, pp. 515–534, Apr. 1998.
[82] C.-T. Lu, H.-H. Hsieh, and L.-H. Lu, “A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 4, pp. 793–802, Apr. 2010.
[83] H.-Y. Chang, Y.-S. Wu, and Y.-C. Wang, “A 38% tuning bandwidth low phase noise differential voltage controlled oscillator using a 0.5 μm E/D-pHEMT process,” IEEE Microwave and Wireless Comp. Lett. vol. 19, no. 07, pp. 467-496, July. 2009.
[84] C.-C. Chiong, H.-Y. Chang, and M.-T. Chen, “Wide-bandwidth InGaP-GaAs HBT voltage-controlled oscillators in K- and Ku-band,” in Proceeding of Global Symposium on Millimeter ave (GSMM), Nanjing, Apr. 2008, pp. 185-188.
[85] C.-C. Chiong, H.-Y. Chang, M.-T. Chen, “Ka-band wide-bandwidth voltage-controlled oscillator in InGaP-GaAs HBT technology,” in European Microw. Integr. Circuit, Oct. 2008, pp. 358-361.
[86] K. Scheir, et al., “A 57-to-66 GHz quadrature PLL in 45 nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 282–283.
[87] A. Musa, et al., “A Low Phase Noise Quadrature Injection Locked Frequency Synthesizer for MM-Wave Applications,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 2011.
[88] U. Decanis, et al., “A mm-Wave Quadrature VCO Based on Magnetically Coupled Resonators,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 182–187.
[89] H.-Y. Chang, Y.-H. Cho, M.-F. Lei, C.-S. Lin, T.-W. Huang, and H. Wang, “A 45-GHz quadrature voltage controlled oscillator with a reflection-type IQ modulator in 0.13-um CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2006, pp. 739-742.
[90] W. L. Chan, H. Veenstra, and J. R. Long, “A 32GHz quadrature LC-VCO in 0.25μm SiGe BiCMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 19, no. 8, pp. 538–539, Feb. 2005.
[91] K. Scheir, S. Bronckers, J. Borremans, P. Wambacq, and Y. Rolain,“A 52 GHz phased-array receiver front-end in 90 nm digital CMOS”,IEEE J. Solid-State Circuits, vol. 43, no.12, Dec. 2008.
[92] P. Sakian, E. v. d. Heijden, H. M. Cheema, R. Mahmoudi, A. v. Roermund, “A 57-63 GHz quadrature VCO in CMOS 65 nm,”in 4th European Microwave Integrated Circuits Conference Digest, Rome, Italy, Oct. 2009.
[93] A. Barghouthi, A. Krause, C. Carta and F. Ellinger,“Design and characterization of a V-Band quadrature VCO based on a common-collector SiGe colpitts VCO,”Compound Semiconductor Integrated Circuit Symp.(CSICS),pp.1-3, 2010.
[94] 林紀賢,“注入鎖定非線性單晶微波積體電路之研究”,民國101年11月。
[95] 呂承翰,“使用注入鎖定技術之微波及毫米波低相位雜訊訊號源積體電路研製”,民國102年6月。
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2015-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明