參考文獻 |
[1] Bressler, S. L., Tang, W., Sylvester, C. M., Shulman, G. L., & Corbetta, M. (2008). Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(40), 10056–10061.
[2] Brown, M., & Lowe, D. (2002). Invariant Features from Interest Point Groups. British Machine Vision Conference, Cardiff, Wales, 656–665.
[3] Fehr, J., Streicher, A., & Burkhardt, H. (2009). A bag of features approach for 3D shape retrieval. Advances in Visual Computing, 5875, 34–43.
[4] Giesbrecht, B., Woldorff, M. G., Song, A. W., & Mangun, G. R. (2003). Neural mechanisms of top-down control during spatial and feature attention. NeuroImage, 19(3), 496–512.
[5] Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.
[6] Jiang, Y.-G., Ngo, C.-W., & Yang, J. (2007). Towards optimal bag-of-features for object categorization and semantic video retrieval. Proceedings of the 6th ACM International Conference on Image and Video Retrieval - CIVR ’07, 494–501.
[7] Khokher, A., & Talwar, R. (2012). Content-based Image Retrieval : Feature Extraction Techniques and Applications. International Conference on Recent Advances and Future Trends in Information Technology (iRAFIT2012), 9–14.
[8] Liu, T., Sun, J., Zheng, N., Tang, X., & Shum, H. Y. (2007). Learning to detect a salient object. In CVPR.
[9] Lowe, D. G. (1999). Object Recognition from Local Scale-Invariant Features. IEEE International Conference on Computer Vision, 1150–1157.
[10] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.
[11] Lv, H., Huang, X., Yang, L., Liu, T., & Wang, P. (2013). A K-means Clustering Algorithm Based on the Distribution of SIFT, 1301–1304.
[12] Ma, Y.-F., & Zhang, H.-J. (2003). Contrast-based image attention analysis by using fuzzy growing. Proceedings of the Eleventh ACM International Conference on Multimedia MULTIMEDIA 03, 102, 374–381.
[13] Mikolajczyk, K., & Schmid, C. (2003). A Performance Evaluation of Local Descriptors. ICPR, 2, 257–263. Retrieved from http://www.computer.org/portal/web/csdl/doi/10.1109/TPAMI.2005.188
[14] Navalpakkam, V., & Itti, L. (2006). An integrated model of top-down and bottom-up attention for optimizing detection speed. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 2049–2056.
[15] Niblack, C. W. (1993). QBIC project: querying images by content, using color, texture, and shape. Proceedings of SPIE, 1908(1), 173–187.
[16] Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.
[17] Pirnog, I., Oprea, C., & Paleologu, C. (2009). Image Content Extraction Using a Bottom-Up Visual Attention Model. 2009 Third International Conference on Digital Society.
[18] Przemyslaw, G., Krzysztof, S. la, & Pawel, D. (2012). Ranking by K-Means Voting Algorithm for Similar Image Retrieval, 509–517.
[19] Rutishauser, U., Walther, D., Koch, C., & Perona, P. (2004). Is bottom-up attention useful for object recognition? Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2.
[20] Schreij D., O. C. T. J. (2008). Abrupt onsets capture attention independent of top-down control settings. Perception and Psychophysics, 70(2), 208–218.
[21] Sivic, J., & Zisserman, a. (2003). {Video Google:} A text retrieval approach to object matching in videos. Proc. CVPR, (Iccv), 2–9.
[22] Theeuwes, J. (1991). Exogenous and endogenous control of attention: the effect of visual onsets and offsets. Perception & Psychophysics, 49(1), 83–90.
[23] Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606.
[24] Torres, R. da S., & Falcão, A. X. (2006). Content-Based Image Retrieval: Theory and Applications. Revista de Informática Teórica E Aplicada RITA, 13(2), 161–185.
[25] Veltkamp, R. C., & Tanase, M. (2000). Content-Based Image Retrieval Systems : A Survey. Technical Report UU-CS-2000-34, Dept. of Computing Science, Utrecht
[26] Wan, T., & Qin, Z. (2010). A new technique for summarizing video sequences through histogram evolution. International Conference on Signal Processing and Communications, 1–5.
[27] Yang, Z., & Kurita, T. (2013). Improvements to the Descriptor of SIFT by BOF Approaches. 2013 2nd IAPR Asian Conference on Pattern Recognition, 95–99.
[28] Yuan, X., Yu, J., Qin, Z., & Wan, T. (2011). A SIFT-LBP image retrieval model based on bag of features. International Conference on Image …, 1061–1064. Retrieved from http://icmll.buaa.edu.cn/members/jing.yu/YuanYuQinWan.pdf
[29] Zhang, S., Tian, Q., Hua, G., Huang, Q., & Gao, W. (2011). Generating descriptive visual words and visual phrases for large-scale image applications. IEEE Transactions on Image Processing, 20(9), 2664–2677.
|