博碩士論文 102521054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.191.171.10
姓名 陳建宏(Jian-hong Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子點分子之量子干涉效應對傳輸及熱電特性的影響
(Quantum interference effects on the transport and thermoelectric properties of quantum dot molecules)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用 tight-binding 模型來研究分析三角型的量子點分子 及 對稱四角型量子點分子之傳輸。借由凱帝旭格林函數(Keldysh-Green`s function )的技巧可以得出系統中的電導值以及西貝克係數。我們將討論量子干涉效應對電導及西貝克係數(Seebeckcoefficient)的影響。此種量子點分子系統有提供兩個傳導路徑允許電子從左電極到右電極,所以具備了產生量子干涉的條件。利用閘極電位來控制量子點的能階進而達到控制量子點的耦合躍遷強度(Hopping strength),因而可以檢測量子干涉效應。由於我們忽略了量子點間的庫倫作用力,所以結果不適用在量子點有多電子佔據的情況。
摘要(英) The charge of triangular and square quantum dot (QD) molecules (QDMs) is studied by using tight-binding model. The electrical conductance and Seebeck coefficient of QDMs are calculated by Keldysh-Green`s function method. Due to two paths, the quantum interference (QI) effect arising from the coherent tunnelingbetween QDs can be observed. We use the longdistance coherent tunneling mechanism to manipulate QI and examine the effect of QI on the thermoelectric coefficients of QDMs connected to metallic electrodes. Because we have ignored electron Coulomb interactions, our results are limited to the case of QDMs energy levels above the Fermi energy of electrodes.
關鍵字(中) ★ 量子干涉效應 關鍵字(英) ★ Quantum interference effect
★ Seebeck effect
論文目次 摘 要.............................................................................................................................I
Abstract..........................................................................................................................II
致謝...............................................................................................................................III
目錄...............................................................................................................................IV
圖目錄...........................................................................................................................VI
第一章 導論 .................................................................................................................1
1-1 前言 .................................................................................................................1
1-2 歷史簡介 .........................................................................................................2
1.3 研究動機 .........................................................................................................5
第二章 系統模型與公式 .............................................................................................7
2-1 系統模型簡介 ................................................................................................7
2-2 系統模型公式 ................................................................................................8
第三章 三顆量子點分子系統傳輸及熱電特性分析 .............................................15
3-1 量子點分子結構的共振能量 ......................................................................15
3-2 熱電係數 ......................................................................................................17
3-3 量子干涉效應 ..............................................................................................22
第四章 四顆量子點分子系統傳輸及熱電特性分析 .............................................28
4-1 量子點分子結構的共振能量 ......................................................................28
4-2 量子干涉效應 ..............................................................................................29
第五章 結論 ...............................................................................................................33
參考文獻......................................................................................................................34
參考文獻 [1]E. Velmre,“Thomas Johann Seebeck and his contribution to the modern
science and technology”, Electronics Conference (BEC), 2010 12th
Biennial Baltic, Tallinn (2010).
[2]Y. G. Gurevich and G. N. Logvinov,“Physics of thermoelectric
cooling”, Semicond. Sci. Technol. 20, R57 (2005).
[3]A. F. Ioffe,“Semiconductor thermoelements, and Thermoelectric
cooling”, Infosearch Limited, London, (1957).
[4]I. D. Hicks, M. S. Dresselhaus, “Thermoelectric figure of merit of
a one-dimensional conductor”, Phys. Rev. B 47, 16631 (1993).
[5]R. Eisberg, R. Resnick. Chapter 3 -“e Broglie′s Postulate—Wavelike
Properties of Particles. Quantum Physics: of Atoms, Molecules”, Solids,
Nuclei,and Particles 2nd Edition. John Wiley & Sons.ISBN 0-471-87373-X
(1985).
[6]C. Davisson, L. H. Germer,“Reflection of electrons by a crystal of
nickel”, Nature.Vol. 119: 558–560(1927).
[7]Constant M. Guédon, Hennie Valkenier, Troels Markussen, Kristian
S.Thygesen,Jan C. Hummelen & Sense Jan van der Molen,“Observation of
quantum interference in molecular charge transport”, Nature
Nanotechnology7,305–309 (2012).
[8]J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-Geller, D.
Goldhaber-Gordon, K. Campman, and A. C. Gossard,“Gate-Controlled
Spin-Orbit Quantum Interference Effects in Lateral Transport”, Phys. Rev.
Lett.90,076807 (2003).
[9]San-Huang Ke * and Weitao Yang, Harold U.Baranger,
“Quantum-Interference-Controlled Molecular Electronics”,Nano
Lett.,8 (10), pp 3257–3261(2008).
[10]S. E. Harris and Y. Yamamoto, “Photon Switching by Quantum
Interference”,Phys. Rev. Lett. 81, 3611(1998).
[11]Chih-Chieh Chen, Yia-chung Chang, and David M. T. Kuo, "Quantum
interference and electron correlation in charge transport through
triangular quantum dot molecules" ,Phys. Chem. Chem. Phys. 17,
6606-6611 (2015)
[12]M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour,
“Conductance of a Molecular Junction”,Science,278, 252–254.(1997).
[13]C. Joachim, J. Gimzewski and A. Aviram, “Electronics using
hybrid-molecular and mono-molecular devices”, Nature,408, 541–548
(2000).
[14]J. Bergfield and C. Stafford, “Many-body theory of electronic
transport in single-molecule heterojunctions”, Phys. Rev. B: Condens.
Matter Mater. Phys.,79, 245125.(2009).
[15]M.Busl, G.Granger, L.Gradreau, R.Sanchez, A.Kam, M. Pioro-Ladriers,
S. A. Studenikin, P. Zawadzki, Z. R. Wasilewski, A. S. Sachrajda and G.
Platero, “Bipolar spin blockade and coherent state superpositions in a
triple quantum dot”,Nature Nanotech 8, 261 (2013).
[16]F. R. Braakman, P. Barthelemy, C. Reichi, W. Wegscheider, and L. M.
K. Vandersypen, “Long-distance coherent coupling in a quantum
dot array”, Nature Nanotech 8, 432 (2013).
[17]S. Amaha, W.Izumida, S.Teraoka, S. Tarucha, J. A. Gupta and
D.G.Austing, “Two- and Three-Electron Pauli Spin Blockade in

Series-Coupled Triple Quantum Dots”, Phys. Rev. Lett.110,016803 (2013).
[18]J. P. Perdew, Alex Zunger,“Self-interaction correction to
density-functional approximations for many-electron systems”,Phys. Rev.
B 23, 5048 (1981).
[19]David M. T. Kuo and Yia-chung Chang, “Theory of spin blockade, charge
ratchet effect, and thermoelectrical behavior in serially coupled quantum
dot system”, Phys. Rev. B 84 ,245303 (2011).
[20]Yigal Meir, Ned S. Wingreen,“Landauer formula for the current
through an interacting electron region”, Phys. Rev. Lett. 68, 2512
(1992).
[21]David M.-T. Kuo and Yia-Chung Chang, “Tunneling Current Spectroscopy
of a Nanostructure Junction Involving Multiple Energy Levels”, Phys. Rev.
Lett. 99, 086803 (2007).
[22]David M.-T. Kuo and Yia-Chung Chang, “Thermoelectric and thermal
rectification properties of quantum dot junctions” ,Phys. Rev. B 81,
205321 (2010).
[23]Zijian Li, Si Tan, Elah Bozorg-Grayeli, Takashi Kodama, Mehdi
Asheghi, Gil Delgado,Matthew Panzer, Alexander Pokrovsky, Daniel Wack,
and Kenneth E. Goodson , “Phonon dominated heat conduction normal to
Mo/Si multilayers with period below 10 nm”, Nano Lett.12 (6), pp 3121–
3126 (2012).
[24]Charles Kittel and Donald F ,“Holcomb Introduction to Solid State
Physics”,Am.J.Phys. 35, 547 (1967).
[25]D.M.T Kuo and Y-C.Chang, “Bipolar Thermoelectric Effect in a
Serially Coupled Quantum”,Jpn.J.Appl.Phys.50,105003(2011).
[26]David M. T. Kuo and Yia-chung Chang, “Long-distance coherent
tunneling effect on the charge and heat currentsin serially coupled triple
quantum dots”, Phys. Rev. B 89, 115416 (2014).
[27]Z. Y. Zeng, F. Claro, and Alejandro Pérez, “Fano resonances and
Aharonov-Bohm effects in transport through a square quantum dot
molecule”, Phys. Rev. B 65, 085308-Published 4 February(2002).
指導教授 郭明庭(Ming-Ting Kuo) 審核日期 2015-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明