參考文獻 |
Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37-66.
Back, T. (1996). Evolutionary algorithms in theory and practice: Oxford Univ. Press.
Beyer, M. A., & Laney, D. (2012). The importance of′big data′: a definition. Stamford, CT: Gartner.
Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey Quarterly, 56(1), 75-86.
Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. Evolutionary Computation, IEEE Transactions on, 7(6), 561-575.
Cano, J. R., Herrera, F., & Lozano, M. (2006). On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining. Applied Soft Computing, 6(3), 323-332.
Cervantes, J., Li, X., & Yu, W. (2008). Support vector classification for large data sets by reducing training data with change of classes. Paper presented at the Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on.
Cheung, D. W., Ng, V. T., Fu, A. W., & Fu, Y. (1996). Efficient mining of association rules in distributed databases. Knowledge and Data Engineering, IEEE Transactions on, 8(6), 911-922.
Collins, D. (2006). Using VMWare and live CD′s to configure a secure, flexible, easy to manage computer lab environment. Journal of Computing Sciences in Colleges, 21(4), 273-277.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi: 10.1007/BF00994018
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods: Cambridge university press.
Da Silva, J. C., Giannella, C., Bhargava, R., Kargupta, H., & Klusch, M. (2005). Distributed data mining and agents. Engineering Applications of Artificial Intelligence, 18(7), 791-807.
Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1), 107-113.
Derrac, J., García, S., & Herrera, F. (2010). A survey on evolutionary instance selection and generation.
Diebold, F. X., Cheng, X., Diebold, S., Foster, D., Halperin, M., Lohr, S., . . . Pospiech, M. (2012). A Personal Perspective on the Origin (s) and Development of “Big Data”: The Phenomenon, the Term, and the Discipline∗.
Domingos, P. (1996). Unifying instance-based and rule-based induction. Machine Learning, 24(2), 141-168.
Dong, J.-x., Devroye, L., & Suen, C. Y. (2005). Fast SVM training algorithm with decomposition on very large data sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(4), 603-618.
Fan, W., & Bifet, A. (2013). Mining big data: current status, and forecast to the future. ACM SIGKDD Explorations Newsletter, 14(2), 1-5.
Foster, I., Yong, Z., Raicu, I., & Shiyong, L. (2008, 12-16 Nov. 2008). Cloud Computing and Grid Computing 360-Degree Compared. Paper presented at the Grid Computing Environments Workshop, 2008. GCE ′08.
Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. Paper presented at the ACM SIGOPS operating systems review.
Godfrey, B. (2006). A primer on distributed computing. DOI= http://www.bacchae.co. uk/docs/dist. html. Accessed March, 8, 2010.
Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14.
Guralnik, V., & Karypis, G. (2004). Parallel tree-projection-based sequence mining algorithms. Parallel Computing, 30(4), 443-472.
Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: U Michigan Press.
Isard, M., Budiu, M., Yu, Y., Birrell, A., & Fetterly, D. (2007). Dryad: distributed data-parallel programs from sequential building blocks. Paper presented at the ACM SIGOPS Operating Systems Review.
Jansen, E. (2003). Netlingo: The Internet Dictionary: Golden Books Centre.
Januzaj, E., Kriegel, H.-P., & Pfeifle, M. (2004). Scalable density-based distributed clustering Knowledge Discovery in Databases: PKDD 2004 (pp. 231-244): Springer.
Jeffrey, C., Brian, D., Mark, D., Joseph, M. H., & Caleb, W. (2009). MAD skills: new analysis practices for big data. Proc. VLDB Endow., 2(2), 1481-1492. doi: 10.14778/1687553.1687576
Jie, L., Zheng, X., Yayun, J., & Rui, Z. (2014, 18-20 Aug. 2014). The overview of big data storage and management. Paper presented at the Cognitive Informatics & Cognitive Computing (ICCI*CC), 2014 IEEE 13th International Conference on.
Karau, H. (2013). Fast Data Processing With Spark: Packt Publishing Ltd.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Paper presented at the Ijcai.
Kovári, A., & Dukan, P. (2012). KVM & OpenVZ virtualization based IaaS open source cloud virtualization platforms: OpenNode, Proxmox VE. Paper presented at the Intelligent Systems and Informatics (SISY), 2012 IEEE 10th Jubilee International Symposium on.
Kuhn, H. W. (2014). Nonlinear programming: a historical view Traces and Emergence of Nonlinear Programming (pp. 393-414): Springer.
Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META Group Research Note, 6.
Mashey, J. R. (1997). Big Data and the Next Wave of InfraS-tress. Paper presented at the Computer Science Division Seminar, University of California, Berkeley.
Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think: Houghton Mifflin Harcourt.
Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.
Nikolaidis, K., Goulermas, J. Y., & Wu, Q. H. (2011). A class boundary preserving algorithm for data condensation. Pattern Recognition, 44(3), 704-715.
Noll, M. G. (2007). Running hadoop on ubuntu linux (single-node cluster). Mar-2013.[Online]. Available: http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-nodecluster/ [Accessed:12-Jun-2013].
Olvera-López, J. A., Carrasco-Ochoa, J. A., Martínez-Trinidad, J. F., & Kittler, J. (2010). A review of instance selection methods. Artificial Intelligence Review, 34(2), 133-143.
Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., & Epema, D. (2010). A Performance Analysis of EC2 Cloud Computing Services for Scientific Computing. In D. Avresky, M. Diaz, A. Bode, B. Ciciani & E. Dekel (Eds.), Cloud Computing (Vol. 34, pp. 115-131): Springer Berlin Heidelberg.
Pallis, G. (2010). Cloud Computing: The New Frontier of Internet Computing. Internet Computing, IEEE, 14(5), 70-73. doi: 10.1109/MIC.2010.113
Panjwani, M. L., & Makhijani, R. K. (2013). Distributed Data Mining and Approaches.
Petre, R. S. (2012). Data mining in cloud computing. Database Systems Journal, 3(3), 67-71.
Rajaraman, A. (2008). More data usually beats better algorithms. Datawocky Blog.
Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. Paper presented at the Collaboration Technologies and Systems (CTS), 2013 International Conference on.
Shackelford, R., McGettrick, A., Sloan, R., Topi, H., Davies, G., Kamali, R., . . . Lunt, B. (2006). Computing curricula 2005: The overview report. ACM SIGCSE Bulletin, 38(1), 456-457.
Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., & Schlund, S. (2013). Produktionsarbeit der Zukunft-Industrie 4.0: Fraunhofer Verlag.
Sugerman, J., Venkitachalam, G., & Lim, B.-H. (2001). Virtualizing I/O Devices on VMware Workstation′s Hosted Virtual Machine Monitor. Paper presented at the USENIX Annual Technical Conference, General Track.
Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to data mining (Vol. 1): Pearson Addison Wesley Boston.
Vapnik, V. N. (1999). An overview of statistical learning theory. Neural Networks, IEEE Transactions on, 10(5), 988-999.
Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., . . . Baldeschwieler, E. (2013). Apache Hadoop YARN: yet another resource negotiator. Paper presented at the Proceedings of the 4th annual Symposium on Cloud Computing, Santa Clara, California.
Wang, L., Von Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., & Fu, C. (2010). Cloud computing: a perspective study. New Generation Computing, 28(2), 137-146.
White, T. (2009). Hadoop: the definitive guide: the definitive guide: " O′Reilly Media, Inc.".
Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data. Systems, Man and Cybernetics, IEEE Transactions on(3), 408-421.
Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning algorithms. Machine Learning, 38(3), 257-286.
Xindong, W., Xingquan, Z., Gong-Qing, W., & Wei, D. (2014). Data mining with big data. Knowledge and Data Engineering, IEEE Transactions on, 26(1), 97-107. doi: 10.1109/TKDE.2013.109
Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., . . . Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. Paper presented at the Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation.
Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I. (2010). Spark: cluster computing with working sets. Paper presented at the Proceedings of the 2nd USENIX conference on Hot topics in cloud computing.
Zaki, M. J. (2000). Parallel and distributed data mining: An introduction Large-Scale Parallel Data Mining (pp. 1-23): Springer.
城田真琴. (2013). Big Data大數據的獲利模式: 圖解.案例.策略.實戰: 經濟新潮社出版. |