博碩士論文 101521104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:52.90.181.205
姓名 謝志宏(Chih-hung Hsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於IEEE P1901規格之PLC系統 基頻內接收機頻域等化器設計與實現
(Design and Implementation of Frequency Equalizer for Digital Baseband Inner Receiver for PLC System Based on IEEE P1901 Specification)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電力線通訊 (Power Line Communication),主要透過電力線,將數據或資訊以數位訊號處理方法進行傳輸,使用既有低頻(50/60Hz)的電力線路傳送寬頻的網路訊息,不需額外佈線及連接方便等優點,使其具”最後一哩”的優勢。但是電力線傳輸環境的不可預測干擾源以及大範圍線路阻抗變化,造成嚴重的雜訊干擾以及通道衰減。因此研究的重點在於如何解決電力線傳輸通道衰減以及抵抗雜訊干擾以提升傳輸效率。
本論文以IEEE P1901規格來設計一基頻接收機。此接收機包含了時域頻域轉換、同步與等化的功能。同步功能包含OFDM符碼邊界偏移估測和取樣時脈偏移估測與補償。等化部分包含通道效應估測與頻域等化器。IEEE P1901標準所制定的前導符元為512點,而傳送的data封包為4096點,為了得到相對應各子載波的通道效應,以前導符元作通道估測再做頻域內插,另外利用前導符元之間的相位差,得到SCO的初始值以加速SCO收斂。因為使用前導符元做通道估測和SCO Tracking,在收斂速度及補償上已有相當速度與準度,所以在頻域等化器方面採用極座標系LMS演算法,並針對可調整增益的數位座標軸旋轉計算器 (MGC-CORDIC),提出改良的通道估測與等化流程,減少硬體面積,在模擬方面,使用C code模擬傳輸過程及傳輸中的不理想效應,並與FPGA、Gate-level結果進行驗證。
摘要(英) Power Line Communication (PLC) is mainly about the transmission of information or data based on digital signal processing method. By using existing power distribution network as the transmission network, this method has the advantage of the “last mile” due to convenient connection and no need for extra wiring. However, unpredictable interference and a wide range of changing impedance, will result in severe noise interference and channel fading. Therefore, the researches in all fields have been focusing on how to solve the attenuation along the power line transmission channel and to improve transmission efficiency against noise interference.
In this dissertation a digital baseband receiver has been designed with respect to IEEE P1901 standard. The digital baseband receiver includes a time domain and frequency domain conversion, synchronization and equalization functions. The synchronization functions include symbol boundary detector and the sampling clock offset estimation and compensation. The equalization functions include channel estimation and frequency domain equalizer.
In IEEE P1901 standard the preamble is set to be 512 points and the transmitted data packet is set to be 4096 points. In order to obtain the channel effect corresponding to each subcarrier, preamble is used in channel estimation then interpolated. Because using preamble to realize channel estimation and SCO tracking, the gain will get better accuracy and speed in compensation and convergence. Therefore the proposed method improved the channel estimation and the equalization process to MGC-CORDIC, and adopted the Polar Coordinate LMS algorithm for the frequency domain equalizer. In addition, the proposed utilized the resource sharing mechanism to reduce the hardware area. And the C code has been used to simulate the transmission process and the undesirable effects during transmission. Finally, the proposed is designed and verified in TSMC 90nm CMOS process.
關鍵字(中) ★ 電力線通訊 關鍵字(英) ★ PLC
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 3
第二章 IEEE P1901 標準和系統架構 4
2.1 正交分頻多工調變介紹 4
2.1.1 OFDM 之數學模型 5
2.1.2 循環字首 6
2.2 PLC系統架構 8
2.3 IEEE P1901規格標準簡介 9
2.3.1 收發機系統架構 9
2.3.2 傳輸參數及實體層封包格式 10
2.3.3 反快速傅利葉轉換調變方法 11
2.3.4 前導符元格式及產生方法 12
第三章 PLC同步與等化架構設計 13
3.1 符碼邊界同步 13
3.1.1 符碼邊界偏移效應 13
3.1.2 符碼邊界偏移估測 15
3.1.3 符碼邊界同步硬體架構 17
3.2 取樣時脈同步 18
3.2.1 取樣時脈偏移效應 18
3.2.2 取樣時脈偏移估測 21
3.2.3 取樣時脈偏移補償 22
數位內插器 22
接收端的A/D取樣頻率大於傳送端D/A取樣頻率 27
接收端的A/D取樣頻率小於傳送端D/A取樣頻率 29
3.3 LMS頻域等化器 31
3.3.1 直角座標系LMS頻域等化器 31
3.3.2 極座標系LMS頻域等化器 33
3.3.3 指數型增益和相角LMS頻域等化器 36
3.4 結合取樣時脈同步與頻域等化器架構設計 40
3.4.1 自動增益控制和載波回復等化器 40
3.4.2 取樣時脈回復等化器 41
3.4.3 結合取樣時脈同步與等化雙迴路架構 43
第四章 結合通道估測與頻域等化器架構設計 44
4.1 通道估測與通道內插 44
4.1.1 通道估測 44
4.1.2 通道頻域內插 45
直角座標系內插[15][16] 46
極座標系內插 47
4.2 座標軸旋轉數位計數器 49
4.2.1 原理說明 49
4.2.2 向量模式 51
4.2.3 旋轉模式 52
4.3 MGC-CORDIC 53
4.4 對數與反對數轉換器[19] 58
4.4.1 對數轉換器 58
4.4.2 基於Least Squares演算法之對數轉換器 59
4.4.3 反對數轉換器 62
4.5 改良型MGC頻域等化器 65
4.5.1 通道估測與等化流程 65
通道估測流程 65
等化流程 68
4.5.2 改良型MGC-CORDIC架構 70
4.5.3 通道估測誤差比較 70
4.5.4 改良型MGC-CORDIC頻域等化器架構 74
第五章 PLC系統模擬與結果 78
5.1 模擬環境 78
5.2 取樣時脈偏移與補償模擬結果 80
5.3 星座圖模擬結果 81
第六章 模擬結果與電路比較 82
6.1 定點數分析 82
6.2 模擬結果驗證 84
6.3 硬體比較 85
第七章 結論與未來展望 86
參考文獻 87

參考文獻 [1] 蒲冠志, 電力線通訊(PLC)系統工程系列專刊 (三) ,2007
http://www.communications.org.tw/communications/upfiles/%E9%9B%BB%E5%8A%9B%E7%B7%9A%E9%80%9A%E8%A8%8A(PLC)%E7%B3%BB%E7%B5%B1%E5%B7%A5%E7%A8%8B%E7%B3%BB%E5%88%97%E5%B0%88%E5%88%8A(%E4%B8%89)%EF%BC%9A%E9%9B%BB%E5%8A%9B%E7%B7%9A%E9%80%9A%E8%A8%8A%E7%B3%BB%E7%B5%B1.pdf
[2] Andrea M. Tonello,Power Line Communications:Advances in Channel Modeling and Filter Bank Modulation,2010
http://www.strath.ac.uk/media/departments/eee/cesip/Prof_Tonello_-_Power_Line_Com munications.pdf
[3] D. Matiæ, “OFDM as a possible modulation technique for multimedia applications in the range of mm waves,” TUD-TVS, Oct. 1998
[4] A.Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” in Proc. IEEE International Conference on ICASSP, vol. 5, April, 1980, pp. 964-967.
[5] IEEE Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications,IEEE,2010
[6] Alan V. Oppenheim, Ronald W.schafer, Discrete Time Signal Processing, 3/E., Prentice Hall, New Jersey, 2009
[7] M.Peeters and Alcatel, “Synchronization with DMT Modulation”, IEEE Communications Magazine, vol. 37, April 1999.
[8] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, “Optimum Receiver Design for Wireless
Broad-Band Systems Using OFDM - Part I,” IEEE Transactions on Communications,
vol. 47, no. 11, November 1999.
[9] Floyd M. Gardner, “Interpolation in Digital Modems – Part II : Implementation and Performance”, IEEE Transactions on communications VOL. 41, NO. 6, June 1993.
[10] S. Haykin, Adaptive Filter Theory, fourth ed., Prentice Hall, New Jersey, 2002
[11] M. T. Shiue and S. S. Long, “A Blind Frequency-Domain Equalization Algorithm for OFDM/DMT Systems Based on AGC and Carrier Recovery”, ITC-CSCC, July 2005.
[12] C. F. Wu, M. T. Shiue and C. K. Wang, “Joint Carrier Synchronization and Equalization for Packet-Based OFDM Systems in Multipath Fading Channel”, IEEE Transactions on Vehicular Technology. vol. 59, no. 1, pp. 248-260, Jan 2010.
[13] R. E. Best, Phase-Locked Loops, third ed., McGraw-Hill, 1997
[14] S. Moridi and H. Sari, “Analysis of Four Decision-Feedback Carrier Recovery Loops in the Presence of Intersymbol Interference”, IEEE Transactions of Wireless
[15] M. Hsieh, C.Wei, “Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels,” IEEE Transactions on ConsumerElectron., vol. 44, no. 1, Feb. 1998
[16] Pei-Yun Tsai, Tzi-Dar Chiueh, “Frequency-Domain Interpolation-Based Channel Estimation in Pilot-Aided OFDM Systems”, IEEE Vehicular Technology Conference, May 2004
[17] K. Itoh. Analysis of the phase unwrapping problem. Applied Optics, 21(14), 1982.
[18] 陳右昀,“應用於PLC系統之AGC-CR通道等化技術”,中央大學 ,電機工程學系碩士論文 ,2008.
[19] 陳彥,“基於IEEE P1901規格之PLC系統基頻內接收機設計”,中央大學 ,電機工程學系碩士論文 ,2013.
[20] Hall E.L., Lynch D.D., Dwyer S.J., “Generation of Products and Quotients Using Approximate Binary Logarithms for Digital Filtering Applications” in T-C. 1970., Feb. 1970.
[21] Byeong-Gyu Nam, “A low-power vector processor using logarithmic arithmetic for handheld 3d graphics systems” in ESSCIRC.2007., Munich, European, Sept. 2007.
[22] Neil H.E. Weste, Kamran Eshraghian, “Principles of CMOS VLSI Design: A Systems Prespective,”Addison Wesley,1994.
[23] H.-J. Kim and B.-G. Nam, “A 231-MHz, 2.18-mW 32-bit Logarithmic Arithmetic Unit for Fixed-Point 3-D Graphics System” In IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 11, NOVEMBER 2006
[24] M. Zimmermann, K. Dostert, “A Multipath Model for the Powerline Channel”, IEEE Transactions on Communications, vol. 50, no. 4, Apr. 2002
指導教授 薛木添(Muh-tian Shiue) 審核日期 2015-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明