博碩士論文 102521095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.116.8.110
姓名 陳宥任(Yu-Jen Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
(Implementation on Fully Integrated Wideband CMOS Low Power Down Conversion Mixer and Up Conversion Power Mixer for C/X Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 論文名稱:應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻 器與寬頻功率混頻器之研製
校所組別:國立中央大學 電機工程學系研究所 電波組
研究生:陳宥任 指導教授:邱煥凱 博士
摘要
本論文主要分兩部份,第一部分研究C/X頻段寬頻低功耗混頻器,共實做兩顆晶片,第一顆利用tsmcTM 0.18 µm CMOS製程,使用倍頻電路架構以獲得偶次項諧波,實現次諧波混頻器,並使用源極注入技術,提升轉換增益,最後實現一寬頻低功耗次諧波降頻器。量測結果顯示,當本地振盪功率為 -1 dBm時,轉換增益為 -8.9 dB,輸入功率1-dB壓縮點為 -10.8 dBm,二階交互調變失真點為13.9 dBm,三階交互調變失真點為 -1 dBm,雙邊帶雜訊指數為12.72 dB,頻寬為5-12 GHz,直流功率消耗為6.5 mW,晶片面積為0.788×1.165 mm2。
第一部份第二顆晶片,利用UMC 0.18 µm CMOS製程,並使用Ruthroff-type單轉雙巴倫作射頻埠輸入匹配,以得到寬頻之響應,應用切換式偏壓技術,改善雙邊帶雜訊指數,以及基極注入達低功耗之目的,量測結果顯示本地振盪功率為 5 dBm時,轉換增益為 7.7 dB,輸入功率1-dB壓縮點為 -18 dBm,二階交互調變失真點為7.7 dBm,三階交互調變失真點為 -9.9 dBm,雙邊帶雜訊指數為10.87 dB,頻寬為5.2-12 GHz,直流功率消耗為0.37 mW,晶片面積為0.765×1.444 mm2。
第二部份為設計混頻器與功率放大器結合之功率混頻器,利用tsmcTM 0.18 µm CMOS製程,使用差動式穿輸線型變壓器作耦合,實現寬頻之功率升頻器,量測結果顯示本地振盪功率為 11 dBm時,轉換增益為 20.97 dB,飽和輸出功率為15.02 dBm,輸出功率1-dB壓縮點功率為13.06 dBm,三階輸入交互調變失真點為3.26 dBm,三階輸出交互調變失真點為22.94 dBm,汲極端效率為10.3%,頻寬為5-12 GHz,直流功率消耗為171.68 mW,晶片面積為0.962×1.572 mm2。
摘要(英) Title : Implementation on Fully Integrated Wideband CMOS Low Power Down Conversion Mixer and Up Conversion Power Mixer for C/X Band Applications
School : National Central University Department of Electrical Engineering
Student : Yu-Jen Chen Advisor : Dr. Hwann-Kaeo Chiou
Abstract
This thesis consists of two parts. The first part is the research regarding a low power consumption wideband mixer. This work has realized two chips, the first chip is a sub-harmonic mixer fabricated in tsmcTM 0.18 µm CMOS process. This mixer uses a doubler to obtain even order harmonics to perform sub-harmonic mixing. Meanwhile, a source driven technique is adopted to enhance the conversion gain. The measurement results shows the performance as follow, a conversion gain of -8.9 dB, a P1dB of -10.8 dBm, an IIP2 of 13.9 dBm, an IIP3 of -1 dBm, a DSB noise figure of 12.72 dB at -1 dBm LO power. The bandwidth is 5-12 GHz. The DC power consumption is 6.5 mW. The chip size is 0.788×1.165 mm2.
The second realized chip is fabricated in UMC 0.18 µm CMOS process. A Ruthroff-type single to differential balun is applied for the wideband input matching. The switched biasing technique is for DSB noise figure improvement. And the bulk injection can reduce the power consumption. The measurement results shows the performance as follow, a conversion gain of 7.7 dB, a P1dB of -18 dBm, an IIP2 of 7.7 dBm, an IIP3 of -9.9 dBm, a DSB noise figure of 10.87 dB at 5 dBm LO power. The bandwidth is 5.2-12 GHz. The DC power consumption is 0.37 mW. The chip size is 0.765×1.444 mm2.
A multi-function circuit incorporated with a up-mixer and a power amplifier is realized in tsmcTM 0.18 µm CMOS process. A differential transmission-line transformer is utilized for wideband power match. The measurement results achieves a conversion gain of 20.97 dB, a Psat of 15.02 dBm, an OP1dB of 13.06 dBm, an IIP3 of 3.26 dBm, an OIP3 of 22.94 dBm, a drain efficiency of 10.3% at 11 dBm LO power. The bandwidth is 5-12 GHz. And the DC power consumption is 171.68 mW. The chip size is 0.962×1.572 mm2.
關鍵字(中) ★ 低功耗降頻器
★ 功率升頻器
關鍵字(英) ★ Low power down conversion mixer
★ Power up mixer
論文目次 目錄
摘要 i
Abstract ii
誌謝 iv
目錄 vi
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究動機 1
1-2 章節簡介 2
第二章 使用倍頻與源極注入之寬頻低功耗次諧波降頻器 3
2-1 前言 3
2-2 電路架構與原理 3
2-3 電路模擬與量測結果 8
2-4 結果與討論 19
第三章 使用單轉雙巴倫與切換式偏壓基極注入之寬頻低功耗降頻器 21
3-1 前言 21
3-2 電路架構與原理 21
3-3 電路模擬與量測結果 30
3-4 結果與討論 42
第四章 使用傳輸線型變壓器耦合之寬頻功率升頻器 47
4-1 前言 47
4-2 電路架構與原理 47
4-3 電路模擬與量測結果 53
4-4 結果與討論 67
第五章 結論 69
5-1 結論 69
5-2 未來期許與研究方向 70
Reference 71
參考文獻 Reference

[1] T.-Y. Yang, and H.-K. Chiou, ”A 28 GHz sub-harmonic mixer using LO doubler in 0.18-µm CMOS technology,” IEEE Radio Freq. Integr. Circuits Symp., Jun. 2006, pp. 209-212.
[2] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9–31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol.41, no.10, pp.2257-2264, Oct. 2006.
[3] W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu, and T.-W. Huang, “A 453-µW 53–70-GHz ultra-low-power double-balanced source-driven mixer using 90-nm CMOS technology,” IEEE Trans. Microwave Theory Tech., vol.61, no.5, pp.1903-1912, May 2013.
[4] C.-S. Lin, P.-S. Wu, H.-Y. Chang, and H. Wang, “A 9-50 GHz Gilbert-cell down-conversion mixer in 0.13-µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293-295, May. 2006.
[5] F.-C. Chang, P.-C. Huang, S.-F. Chao, and H. Wang, “A low power folder mixer for UWB system applications in 0.18-µm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 367-369, May. 2007.
[6] 周泓廷, “應用於 V-頻段射頻收發機前端電路之超低功耗源極注入式混頻器之研製,” 國立中央大學, 博士論文, 2013。
[7] 郭士慶, “應用於 K/V 頻段低功耗混頻器之研製,” 國立中央大學, 碩士論文, 2013。
[8] K.-H. Liang, H.-Y. Chang, and Y.-J. Chan, “A 0.5–7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18-μm CMOS technology,” IEEE Micro. Wireless Compon. Lett., vol. 17, no. 7, pp. 531-533, Jul. 2007.

[9] M.-G. Kim, H.-W. An, Y.-M. Kang, J.-Y. Lee, and T.-Y. Yun, “A low-voltage, low-power, and low-noise UWB mixer using bulk-injection and switched biasing techniques,” IEEE Trans. Microwave Theory Tech., vol.60, no.8, pp. 2486-2493, Aug. 2012.
[10] H. Zijie, and K. Mouthaan, “A 1- to 10-GHz RF and wideband IF Cross-Coupled Gilbert mixer in 0.13-μm CMOS,” IEEE Trans. Circuits Syst. II, exp. Briefs, vol. 60, no. 11, pp. 726-730, Nov. 2013.
[11] P.-Z. Rao, T.-Y. Chang, C.-P. Liang, and S.-J. Chung, “An ultra-wideband high-linearity CMOS mixer with new wideband active baluns,” IEEE Trans. Microwave Theory Tech, vol. 57, no. 9, pp. 2184-2192, Sep. 2009.
[12] S. He and C. E. Saavedra, “An ultra-low-voltage and low-power ×2 sub-harmonic down converter mixer,” IEEE Trans. Microwave Theory Tech, vol. 60, no. 2, pp. 311-317, Feb. 2012.
[13] J.-S. Paek, and S. Hong, “A 1.83 GHz 28.5 dBm CMOS power up-mixer,” IEEE Micro. Wireless Compon. Lett., vol. 19, no. 6, pp. 389-391, Jun. 2009.
[14] S. Kousai, and A. Hajimiri, “An octave-range, Watt-level, fully-integrated CMOS switching power mixer array for linearization and back-off-efficiency improvement,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3376-3392, Dec. 2009.
[15] 郭晉瑋,“應用傳輸線型變壓器於X/K-Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製,” 國立中央大學, 碩士論文, 2013。
[16] Sewiolo, B. Fischer, G. Weigel, R., “A 12-GHz high-efficiency tapered traveling-wave power amplifier with novel power matched cascode gain cells using SiGe HBT transistors,” IEEE Trans. Microwave Theory Tech, vol. 57, no. 10, pp. 2329-2336, Oct. 2009.
[17] C. Lu, A.-V.H. Pham, M. Shaw, and C. Saint, “Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation,” IEEE Trans. Microwave Theory Tech, vol. 55, no. 11, pp. 2320-2328, Nov. 2007.
[18] P.-C. Huang, K.-Y. Lin, H. Wang, "A 4–17 GHz Darlington cascode broadband medium power amplifier in 0.18-μm CMOS technology," IEEE Micro. Wireless Compon. Lett., vol. 20, no. 1, pp. 43-45, Jan. 2010.

[19] N. Codega, P. Rossi, A. Pirola, A. Liscidini, and R. Castello, “A current-mode, low out-of-band noise LTE transmitter with a class-A/B power mixer,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1627-1638, Jul. 2014.

[20] H.-K. Chiou, H.-Y. Chung, “2.5-7 GHz single balanced mixer with integrated Ruthroff-type balun in 0.18 µm CMOS technology,” Electron. Lett., vol. 49, no. 7, pp. 474-475, Mar. 2013.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2015-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明