參考文獻 |
[1] J. R. Long, “Monolithic transformers for silicon RFIC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sep. 2000.
[2] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer–a new power-combining and impedance-transformation technique,“ IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316-331, Jan. 2002.
[3] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1054-1063, May 2008.
[4] K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W. Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated CMOS power amplifiers,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008.
[5] J. Kim, W. Kim, H. Jeon, Y. Y. Huang, Y. Yoon, H. Kim, C. H. Lee, K.T. Kornegay, “A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer, ” IEEE J. Solid-State Circuits, of , vol.47, no.3, pp.599-614, Mar. 2012
[6] C. L. Ruthroff, “Some broadband transformers,” Proc. IRE, vol. 47, pp. 1337-1342, Aug. 1959.
[7] G. Guanella, “New method of impedance matching in radio-frequency circuits,” Brown-Boveri Rev., vol. 31, pp. 327-329, Sep. 1944.
[8] H.-K. Chiou, H.-Y. Chung, “2.5-7 GHz single balanced mixer with integrated ruthroff-type balun in 0.18 μm CMOS technology, ” Electronics Letters , vol.49, no.7, pp.474-475, Mar. 28 2013
[9] B. Kim, J. Moon, I. Kim, “Efficiently amplified, ” IEEE Microwave Magazine, vol.11, no.5, pp.87-100, Aug. 2010
[10] S. Jin, B. Park, K. Moon, M. Kwon, B. Kim, “Linearization of CMOS cascode power amplifiers through adaptive bias control, ” IEEE Trans. Microw. Theory Tech., vol.61, no.12, pp.4534-4543, Dec. 2013
[11] C. C. Cheng, “Neutralization and unilateralization, ” Circuit Theory, IRE Transactions on, vol.2, no.2, pp.138-145, Jun. 1955
[12] B.-H. Ku, S.-H. Baek, S. Hong, “A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips,” IEEE Trans. Microw. Theory Tech., vol.59, no.6, pp.1599-1609, Jun. 2011
[13] H. Wang, C. Sideris, and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[14] P.-S. Chi, Z.-M. Tsai, J.-L. Kuo, K.-Y. Lin, and H. Wang, “An X-band, 23.8-dBm fully integrated power amplifier with 25.8% PAE in 0.18-μm CMOS technology,” 40th European Microwave Conference (EuMC), Paris, France, vol. 28-30, pp.1678-1681, Sep. 2010
[15] P.-C. Huang, K.-Y. Lin and H. Wang, “A 4–17 GHz Darlington cascode broadband medium power amplifier in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 43–45, Jan. 2010.
[16] C. Lu, A.-V.H. Pham, M. Shaw, C. Saint, ”Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation,” IEEE Trans. Microw. Theory Tech., vol.55, no.11, pp.2320-2328, Nov. 2007
[17] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[18] C.-H. Lin and H.-Y. Chang, “A broadband injection-locking class-E power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3232-3242, Oct. 2012
[19] C.-W. Kuo; H.-K. Chiou; H.-Y. Chung, “An 18 to 33 GHz fully-integrated Darlington power amplifier with Guanella-type transmission-line transformers in 0.18 µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol.23, no.12, pp.668-670, Dec. 2013
[20] Y. Yin, X. Yu, Z. Wang, B. Chi, “An efficiency-enhanced stacked 2.4-GHz CMOS power amplifier with mode switching scheme for WLAN applications,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 2, pp. 672-682, Jan. 2015.
[21] E. Kaymahsut, P. Reynaert, “Transformer-based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1659-1671, Jul 2012.
[22] T.-M. Chen, Y.-M. Chiu, C.-C. Wang, K.-U. Chan, Y.-H. Lin, M.-C. Huang, C.-H. Lu, W.-S. Wang, C.-S. Hu, C.-C. Lee, C. Cheng, J.-Z. Huang, B.-I Chang, S.-C. Yen, “A low-power fullband 802.11a/b/g WLAN transceiver with on-chip PA” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 983-991, May 2007.
[23] W. Bakalski, A. Vasylyev, W. Simburger, M. Kall, A. Schmid, K. Kitlinski, “ A 4.8-6 GHz IEEE 802.11a WLAN SiGe-bipolar power amplifier with on-chip output matching,” European Microwave Conference (EuMC), vol.28–30, pp.1678–1681. Oct. 2005
[24] F. Wang, D.F. Lie, D.Y. Asbeck, P.M. Larson, L.E. “A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1271-1281, Jun. 2007.
[25] C.-H. Lin, Y.-K. Su, Y.-Z. Juang, C.-F. Chiu, S.-J. Chen, J. F., C.-H. Tu, “The optimized geometry of the SiGe HBT power cell for 802.11a WLAN applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 49-51, Jan. 2007.
[26] IEEE Std 802.11a-1999, IEEE Standard 802.11, 2013.
[27] B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill, 2001.
[28] 廖顯原,「應用於矽基功率放大器之傳輸線變壓器與穿透矽通孔之研究」,國立中央大學,博士論文,民國100年。
[29] 郭晉瑋,「應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國102年。
[30] 陳柏勳,「應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製」,國立中央大學,碩士論文,民國103年。
|