博碩士論文 955401002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.145.63.136
姓名 姚凱文(Kai-Wen Yao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 生醫類比前端電路與壓控對稱式CMOS擬態電阻設計
(An Analog Front-End System of Biosignals Acquisition with CMOS Voltage-Controlled Symmetric Pseudo-Resistors)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著現代醫學的發達,可攜帶的生醫訊號量測裝置是目前的趨勢,我們希望病人可以攜帶輕巧的監控裝置並可長時間的監控生理狀態。近幾年來不同生醫應用層面的生理訊號量測系統發展趨向於微小化並搭配無線方式傳輸訊號。

本篇主旨為提出一應用於生醫訊號量測系統之低雜訊前端類比前端電路,其中包含可調增益放大器與三角積分調變電路,可針對不同生醫訊號如腦波圖(EEG)、心電圖(ECG)訊號作記錄。為了將其中低頻的非理想如直流偏移電壓、閃爍雜訊等影響減小,並考量電路為on chip設計,我們設計一可調性CMOS擬態電阻用來形成極低頻之極點,克服形成低頻極點需要大電阻的問題,並且改善製程變異與共模電壓的飄移。為了降低整體電路的功率消耗及減低熱雜訊,將放大器輸入級的場效電晶體操作於弱反轉區可以比電晶體操作在飽和區有更好的表現,整體電路以高解析度、低功耗及低雜訊為設計目標。

在弱反轉技術的基礎上,我們設計一可調式壓控CMOS擬態電阻,應用於生醫放大器中可調整其頻寬。可調式壓控CMOS擬態電阻包含操作在弱反轉區PMOS與自動電壓調整電路。此可調整頻寬生醫放大器提供40.2 dB 增益、操作頻寬約9.5 kHz、輸入雜訊從6.3 Hz到9.5 kHz 約 5.2 uVrms、從 250 Hz 到 9.5 kHz 約 5.54 uVrms且只有 10.35-uW 功耗.在此電路中低頻截止頻率可調頻寬範圍為 6.3 Hz 到 600 Hz.

可調增益放大器包含偏壓電路、可調式CMOS擬態電阻、ac 耦合式帶通濾波器、共模回授電路。。在電路實現上,在輸入訊號頻率1 kHz、150 uV輸入振幅下,整體放大器增益為72 dB,而在輸入訊號200 Hz,2 mV的輸入振幅下,放大器增益為58 dB,可調低頻截止點範圍為4 Hz到300 Hz,輸入相關雜訊為3.61 uVrms,整體總諧波失真為60.21 dB,雜訊效率因素(Noise efficiency factor)為4.7。我們使用台積電0.18 uV CMOS 1P6M製程,其晶片面積約佔0.68 mm^2。在1.8 V電源供應下,整體晶片消耗之功率約為55 uW。

三角積分類比數位轉換器主要由三角積分調變器與數位降頻濾波器所組成。本文所設計之電路結合SC-SDM與SO-SDM之優點並將其整合,以低功率與高解析度為其設計標的完成一應用於所有生理訊號量測之三角積分調變器。電路實現上,在訊號頻寬10KHz、128倍超取樣率與±0.1V的輸入振幅下,所設計之二階三角積分調變器訊號雜訊失真比為86.47 dB,有效位元數達到13.97位元且整體晶片消耗之功率為318 uW。最後的量測結果顯示訊號雜訊失真比為77.57 dB,有效位元數為12.59位元。在1.8V電源供應下,整體晶片消耗之功率約392 uW。
摘要(英) As modern medicine advances, the portable bio-medical measurement device has become the favorable trend currently. It is expected that the patient can carry light devices for long-term monitoring the physical conditions. In recent years, the bio-signal measurement devices for various bio-medical applications tend to get minimized in collaboration with wireless transmission capabilities.

The purpose of this thesis is to propose a low noise analog-front-end circuit for bio-signal measurement system comprised by a programable gain amplifier and a SC-SO delta-sigma modulator in order to record different bio-signals like Electronencephalogram (EEG) and Electrocardiography (ECG) signals. While the circuit operates at low frequencies, a tunable pseudo-resistor with a huge resistance is seriously required for an extremely low frequency pole to minimize the non-ideal effects, including DC-offset, flicker noise, on chip design, and the like. The issues of process variation and DC-offset from electrode the pseudo-resistor can therefore be resolved. On the other hand, the input stage MOS of the operation amplifier are designed to operate at the weak-inversion region in order to reduce the power consumption and thermal noise effect and obtain better performance than MOS in saturation. Overall, the AFE circuit aims at low power consumption, low-noise, and high resolution.

In this research, a bio-amplifier that employs a voltage-controlled-pseudo-resistor is designed based on weak-inversion technique to achieve tunable bandwidth and extensive operation voltage range for biomedical applications. Through ultra-high resistance for ac coupling, the versatile pseudo-resistor eliminates the dc offset from electrode-tissue interface. Since the voltage-controlled-pseudo-resistor consists of serial-connected PMOS transistors working at the subthreshold region and an auto-tuning circuit, it promises the constant (time-invariant) control-voltage of the pseudo-resistor. Such bandwidth-tunable bioamplifier is designed in a 0.18-um standard CMOS process, achieving gain at 40.2 dB with 10.35-uW power consumption. In addition, the proposed chip can also be used to develop the proof-of-concept prototype, with operation bandwidth at 9.5 kHz, input-referred noise at 5.2 uVrms from 6.3 Hz to 9.5 kHz, 5.54 uVrms from 250 Hz to 9.5 kHz, and tunable cutoff-frequency from 6.3 Hz to 600 Hz.

A bias circuit, a pseudo-resistor, an ac coupling band-pass filter, and common-mode feedback circuit are included in the VGA circuit. With the input signal at 1 kHz sine wave with 150 uW amplitude, the AFE achieves mid-band gain of 72 dB. In the meantime, when the input signal is 200 Hz sine wave with 2 mV amplitude, the AFE achieves mid-band gain of 58 dB. For the programmable low-cutoff frequency, it ranges from 4 to 300 Hz. Moreover, the input referred noise is 3.61 uVrms, and the THD is 60.2 dB. The circuit is fabricated in the TSMC 0.18-um one-poly six metals CMOS process, and the chip area is 0.68 mm^2. Finally, the simulated power consumption is around 55 uW for 1.8 V power supply.

In this thesis, a delta-sigma A/D converter consists of SDM and decimation filter. The proposed SDM is characterized with the advantages of Switched-Capacitor SDM (SC-SDM) and Switched-OPAMP SDM (SO-SDM). Aiming at low power consumption and high resolution, the SDM is accomplished for all applications of bio-signal measurement. It is found that, with an oversampling ratio (OSR) of 128, and 0.2 Vpp amplitude, the modulator achieves 86.47 dB signal-to-noise and distortion ratio (SNDR), 13.97 effective number of bits (ENOB) , and power consumption 318 uW at 10-kHz signal bandwidth. The measurement results show that signal to noise distortion ratio at 77.57 dB, 12.59 ENOB, and the measured power consumption around 392 uW for 1.8V power supply.
關鍵字(中) ★ 生醫放大器
★ 三角積分調變器
★ CMOS擬態電阻
關鍵字(英) ★ Bioamplifier
★  Delta-sigma modulator
★  Pseudo-resistor
論文目次 1、Introduction . . . . . . . . . . . . . . . . . . . . 1
1-1 Motivation . . . . . . . . . . . . . . . . . . . . . 2
1-2 Architecture . . . . . . . . . . . . . . . . . . . . 4
2、Overview of key techniques : CMOS pseudo-resistors
and switched-opamp (SO) delta-sigma modulator 5
2-1 Basic analysis of CMOS EKV model . . . . . . . 5
2-1-1 Drain current expression . . . . . . . . . . . . . 5
2-1-2 Approximation of the drain current in weak inversion
. . . . . . . . . . . . . . . . . . . . . . . 9
2-2 CMOS based pseudo-resistors . . . . . . . . . . 12
2-2-1 Principles of PMOS pseudo-resistors . . . . . . . 12
2-2-2 Reviews of Pseudo-Resistor Architectures . . . . 14
2-3 Basic principles of oversampling ADCs . . . . . 17
2-3-1 Nyquist-rate ADCs and oversampling ADCs . . 17
2-3-2 Quantization error . . . . . . . . . . . . . . . . 19
2-3-3 Oversampling techniques . . . . . . . . . . . . . 21
2-3-4 Noise shaping . . . . . . . . . . . . . . . . . . . 22
2-4 Basic of delta-sigma modulator . . . . . . . . . . 24
2-4-1 1st-order delta-sigma modulator . . . . . . . . . 24
2-4-2 2nd-order delta-sigma modulator . . . . . . . . . 25
2-5 Introduction to switched-capacitance and switchedopamp
techniques . . . . . . . . . . . . . . . . . 26
2-5-1 switched-capacitance (SC) integrator . . . . . . 26
2-5-2 switched-opamp (SO) integrator . . . . . . . . . 28
3、Design of bioamplifiers with voltage-controlled symmetric
pseudo-resistors (VCSPR) . . . . . . . . 31
3-1 Biosignals classification . . . . . . . . . . . . . . 31
3-1-1 Equivalent model of bio-electrodes . . . . . . . . 32
3-2 Review of bioamplifiers . . . . . . . . . . . . . . 33
3-2-1 Traditional instrumentation amplifier . . . . . . 33
3-2-2 Auto-zero Technique . . . . . . . . . . . . . . . 36
3-2-3 Chopper Stabilization Technique (CHS) . . . . . 37
3-2-4 The Integral Negative Feedback Technique . . . 39
3-2-5 AC Coupling Techniques . . . . . . . . . . . . . 40
3-3 Non-ideal effects: Noise . . . . . . . . . . . . . . 41
3-3-1 Thermal Noise . . . . . . . . . . . . . . . . . . . 41
3-3-2 Flicker Noise . . . . . . . . . . . . . . . . . . . . 42
3-4 Bandwidth-tunable Bioamplifier Design . . . . . 44
3-4-1 Low-power Low-noise OTA Design . . . . . . . . 45
3-5 Voltage-controlled symmetric pseudo-resistors (VCSPR)
. . . . . . . . . . . . . . . . . . . . . . . . 48
3-6 MEASUREMENT RESULTS . . . . . . . . . . 53
4、Design of delta-sigma modulator combining switchedcapacitor
(SC) and switched-opamp (SO) techniques
. . . . . . . . . . . . . . . . . . . . . . . 61
4-1 Second-order SC delta-sigma modulator . . . . . 61
4-2 Second-order SO delta-sigma modulator . . . . . 63
4-3 Design criteria . . . . . . . . . . . . . . . . . . . 65
4-4 Non-ideal effects . . . . . . . . . . . . . . . . . . 66
4-4-1 Switching noise . . . . . . . . . . . . . . . . . . 66
4-4-2 Sampling noise . . . . . . . . . . . . . . . . . . 67
4-5 Specifications and Circuit designs . . . . . . . . 72
4-5-1 System design . . . . . . . . . . . . . . . . . . . 73
4-5-2 Circuit designs: Amplifiers . . . . . . . . . . . . 76
4-5-3 Circuit designs: quantizer, 1-bit DAC, and nonoverlapping
clock . . . . . . . . . . . . . . . . . . . 77
4-5-4 Control group: SC-SC DSM . . . . . . . . . . . 79
4-6 Simulation and measurement results . . . . . . . 81
4-6-1 Simulation results . . . . . . . . . . . . . . . . . 81
4-6-2 Measurement considerations . . . . . . . . . . . 81
4-6-3 Measurement results . . . . . . . . . . . . . . . 84
5、An analog front-end with VCSPR-based programable
gain amplifier and SC-SO Delta-Sigma Modulator
. . . . . . . . . . . . . . . . . . . . . . . 87
5-1 Considerations of pseudo-resistor-based bioamplifiers
. . . . . . . . . . . . . . . . . . . . . . . . 88
5-1-1 Analysis and considerations of the pseudo-resistance
noise . . . . . . . . . . . . . . . . . . . . . . . . 88
5-1-2 Considerations of circuit noise and areas . . . . . 91
5-2 Circuit designs . . . . . . . . . . . . . . . . . . 93
5-2-1 Operational Transconductance Amplifier Design 93
5-2-2 Common Mode Feedback Circuit Design . . . . . 97
5-2-3 Biasing circuit design . . . . . . . . . . . . . . . 99
5-3 An analog front-end with VCSPR-based VGA and
SC-SO DSM . . . . . . . . . . . . . . . . . . . . 100
5-3-1 Tunable gain circuit design . . . . . . . . . . . . 100
5-3-2 Design concept of A biomedical analog front-end 101
5-3-3 Simulation and measurement results . . . . . . . 104
6、Conclusion and future works . . . . . . . . . . . 111
6-1 Conclusion . . . . . . . . . . . . . . . . . . . . . 111
6-2 Future works . . . . . . . . . . . . . . . . . . . 111
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
參考文獻 [1] R. Carpenter and B. Reddi, Neurophysiology: A Conceptual Approach. CRC Press, 2012.
[2] S. Kim, J. Lee, S. Song, N. Cho and H. Yoo, “An Energy-Efficient Analog Front-End Circuit for a Sub-1-V Digital Hearing Aid Chip,” IEEE J. Solid-State Circuits, vol. 41, no.4, Apr. 2006.
[3] T. Denison, K. Consoer, W. Santa, A.-T. Avestruz, J. Cooley, and A. Kelly ,“A 2 uW 100 nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials,”IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
[4] K. A. Ng and P. K. Chan, “A CMOS analog front-end IC for portable EEG/ECG monitoring applications,”IEEE Trans. Circ. Syst. I, Reg. Papers, vol. 52, no. 11, pp. 2335-2347, Nov. 2005.
[5] H. Y. Yang and R. Sarpeshkar, “A Bio-Inspired Ultra-Energy-Efficient Analog-to- Digital Converter for Biomedical Applications,” IEEE Trans. Circ. Syst. I, Reg. Papers, vol. 53, no. 11, pp. 2349–2356, Nov. 2006.
[6] T. Yang, J. Lu and J. Holleman, ”A high input impedance lownoise instrumentation amplifier with JFET input,” in Proc. 56th IEEE Midwest Symp. Circuits Syst. (MWSCAS), pp.173-176, Aug. 2013.
[7] J. Lu, T. Yang, M. S. Jahan and J. Holleman, ”A Low-Power 84-dB Dynamic-Range Tunable Gm-C Filter for Bio-Signal Acquisition,” in Proc. 57th IEEE Midwest Symp. Circuits Syst. (MWSCAS), pp. 1029-1032, Aug. 2014.
[8] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[9] C.-Y. Wu, W.-M. Chen, and L.-T. Kuo, ”A CMOS power-efficient lownoise current-mode front-end amplifier for neural signal recording,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 2, pp. 107-114, Apr. 2013.
[10] R. F. Yazicioglu, P. Merken, R. Puers, and C. V. Hoof, ”A 60uW 60 nV/pHz readout front-end for portable biopotential acquisition systems,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1100-1110, May 2007.
[11] C. Enz and E. Vittoz, Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design. New York: Wiley, 2006.
[12] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits. New York: John Wiley Sons, Inc., 2001.
[13] R. R. Harrison and C. Charles, “A low-power, low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–965, Jun. 2003.
[14] X. D. Zou, X. Y. Xu, J. Tan, L. B. Yao, and Y. Lian, “A 1-V 1.1-uW Sensor Interface IC for Wearable Biomedical Devices,” in Proc. IEEE Int. Symp. Circuits and Systems, 2008, pp. 2725–2728.
[15] E. C. M. Lim, X. D. Zou, Y. J Zheng, and J. Tan, “Design of lowpower low-voltage biomedical amplifier for electrocardiogram signal recording,” in Proc. IEEE Biomedical Circuits Syst. Conf., 2007, pp. 191–194.
[16] R. H. Olsson III, D. L. Buhl, A. M. Sirota, G. Buzsaki, and K. D. Wise, “Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays,” IEEE Trans. Biomed. Eng., vol. 52, no. 7, pp. 1303–1311, Jul. 2005.
[17] A. Tajalli, Y. Leblebici, and E. J. Brauer, “Implementing ultrahigh-value floating tunable CMOS resistor,” Electron. Lett., vol. 44, no. 5, pp. 349– 350, Feb. 2008.
[18] X. D. Zou, X. Y. Xu, L. B. Yao, and Y. Lian, “A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip,” IEEE J. Solid-State Circuits, pp. 1067-1077, Apr. 2009.
[19] S. R. Norsworthy, R. Schreier and G. Temes, Delta-Sigma Data Converters –Theory, Design, and Simulation. New York: IEEE Press, 1997.
[20] R. J. Baker, CMOS-Circuit Design, Layout and Simulation. Canada: John Wiley Sons. , Second Edition, 2008.
[21] C.H. Su, “Circuit Implementation of Sigma-Delta Modulators,” Dept. Elect. Eng., National Central Univ., 2007.
[22] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. Canada: John Wiley Sons. , 2005.
[23] R. J. Baker, CMOS–Mixed Signal Circuit Design. America: John Wiley Sons. , 2002.
[24] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford University Press, Jan. 2002.
[25] V. S. L. Cheung and H. C. Luong, Design of Low-Voltage CMOS Switched-Opamp Switched-Capacitor systems. Boston: Kluwer Academic, Second Edition, 2003.
[26] J. Sauerbrey, T. Tille D. Schmitt-Landsiedel and R. Thewes, “A 0.7-V MOSFET-Only Switched-Opamp ΣΔ Modulator in Standard Digital CMOS Technology,”IEEE J. Solid-State Circuits, vol. 37, no. 12, Dec. 2002.
[27] V. Peluso, P. Vancorenland, M. Steyaert and W. Sansen, “A 900-mV Differential Class AB OTA for Switched-Opamp Applications,” Electron. Lett., vol. 33, no. 17, pp. 1455–6, Aug. 1997.
[28] J. G. Webster, Medical Instrumentation Application and Design. Canada: John Wiley Sons., 1998.
[29] A. S. Sedra and K. C. Smith, Microelectronic circuit. 5th ed. New York: Oxford, Aug. 2007.
[30] A. Harb and M. Sawan,“New low-power low-voltage high-cmrr cmos instrumentation amplifier”Circuits and Systems, in Proc. IEEE Int. Symp. Circuits and Systems, 1999, pp. 97-100.
[31] C.C. ENZ and G.C. Temes,“Circuit techniques for reducing the effects of op-amp imperfections:autozeroing, correlated double sampling, and chopper stabilization,”Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.
[32] H. Chandrakumar, and D. Markovic, “A Simple Area-Efficient Ripple-Rejection Technique for Chopped Biosignal Amplifiers,” IEEE Trans. Circ. Syst. II, Exp. Briefs, vol. 62, no. 2, pp. 189-193, Feb. 2015.
[33] S. Song, M. Rooijakkers, P. Harpe, C. Rabotti, M. Mischi, A. H. M. van Roermund, and E. Cantatore, “A Low-Voltage Chopper-Stabilized Amplifier for Fetal ECG Monitoring With a 1.41 Power Efficiency Factor,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 2, pp. 237–247, Apr. 2015.
[34] V. Balasubramanian, P.-F. Ruedi, Y. Temiz, A. Ferretti, C. Guiducci, and C. C. Enz,” A 0.18 um Biosensor Front-End Based on 1/f Noise, Distortion Cancelation and Chopper Stabilization Techniques,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 660–673, Oct. 2015.
[35] B. Gosselin, M. Sawan, C. A. Chapman, “A low-power integrated bioamplifier with active low-frequency suppression,”IEEE Trans. Biomed. Circuits Syst., vol. 1, no. 3, pp. 184–192, Jun. 2007.
[36] T.-Y. Wang, L.-H. Liu, and S.-Y. Peng,“A Power-Efficient Highly- Linear Reconfigurable Biopotential Sensing Amplifier Using Gate- Balanced Pseudo Resistors,” IEEE Trans. Circ. Syst. II, Exp. Briefs, vol. 62, no. 2, pp. 199-203, Feb. 2015.
[37] Z. Karasz, R. Fiath, P. Foldesy, A. R. Vazquez,“Tunable Low Noise Amplifier Implementation With Low Distortion Pseudo-Resistance for in Vivo Brain Activity Measurement,” IEEE Sensors J., vol. 14, no. 5, pp. 1357-1363, May 2014.
[38] H. Rezaee-Dehsorkh, N. Ravanshad, R. Lotfi, K. Mafinezhad, and A. M. Sodagar, “Analysis and Design of Tunable Amplifiers for Implantable Neural Recording Applications,” IEEE J. Emerg. Sel. Topic Circuits Syst., vol. 1, no. 4, pp. 546-556, Dec. 2014.
[39] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA: McGraw-Hill, 2001.
[40] M.-T. Shiue, K.-W. Yao, C.-S. A. Gong, “A bandwidth-tunable bioamplifier with voltage-controlled symmetric pseudo-resistors,” Microelectron. J., vol. 46, no. 6, pp. 472-481, Jun. 2015.
[41] R. R. Harrison,“The Design of Integrated Circuits to Observe Brain Activity,” Proc. IEEE, vol. 96, no. 7, pp. 1203-1216, Jul. 2008.
[42] T. M. Seese, H. Harasaki, G. M. Saidel, and C. R. Davies, “Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating,” Lab. Invest., vol. 78, no. 12, pp. 1553-1562, 1998.
[43] J. D. Weiland and M. S. Humayun, “A biomimetic retinal stimulating array,” IEEE Eng. Med. Biol. Mag., vol. 24, no. 5, pp. 14-21, Sep. 2006.
[44] M.-T. Shiue, K.-W. Yao, and C.-S.A. Gong, “Tunable high resistance voltage-controlled pseudo-resistor with wide input voltage swing capability,” Electron. Lett., vol. 47, no. 6, pp. 377–378, Mar. 2011.
[45] M. S. J. Steyaert, W. M. C. Sansen, and C. Zhongyuan, “A micropower low-noise monolithic instrumentation amplifier for medical purpose”IEEE J. Solid-State Circuits, vol. 22, pp. 1163-1168, Dec. 1987.
[46] J. Lee, M. Johnson, and D. Kipke, “A tunable biquad switchedcapacitor amplifier-filter for neural recording,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 5, pp. 295–300, Oct. 2010.
[47] M. Azin, D. J. Guggenmos , S. Barbay , R. J. Nudo and P. Mohseni, “A battery-powered activity-dependent intracortical microstimulation IC for brain-machine-brain interface,”IEEE J. Solid-State Circuits, vol. 46, pp. 731-745, Apr. 2011.
[48] C. M. Lopez, D. Prodanov, D. Braeken, I. Gligorijevic, W. Eberle, C. Bartic, R. Puers, and G. Gielen, “A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability,”IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 2, pp. 101–110, Apr. 2012.
[49] P. C. Davis, S. F. Moyer and Veikko R. Saari,“Relationship Between Frequency Response and Settling Time of Operational Amplifiers,” IEEE J. Solid-State Circuits, vol. 9, no. 6, Dec. 1974.
[50] J. Crols and M. Steyart, “Switched-Opamp: An Approach to Realize Full CMOS Switched-Capacitor Circuits at Very Low Power Supply Voltages,”IEEE J. Solid-State Circuits, vol. 29, no. 8, pp. 936-42, Aug. 1994.
[51] M. Gustavsson, J. J. Wikner and N. N. Tan, CMOS Data Converters for Communications. New York: Kluwer Academic Publishers, 2002.
[52] Z. M. Lee, “MOS Sampling Circuits,”Dept. Elect. Eng., National Central Univ., 2009.
[53] A. Yukawa, “A CMOS 8-bit high speed A/D converter IC,”IEEE J. Solid-State Circuits, vol. 20, pp. 954-961, Dec. 1987.
[54] J. Wu,“High-Speed Analog-to-Digital Conversion in CMOS VLSI,” Ph. D. Disseration, Stanford University, Mar. 1988.
[55] C. M. Hsu, T. C. Yo and C. H. Luo, “An Ultra-Low Power Variable-Resolution Sigma-Delta Modulator for Signals Acquisition of Biomedical Instrument,”IEICE Trans. Electron., vol. E90-C, no. 9, pp. 1823-1829, Sep. 2007.
[56] H. Y. Lee, C. M. Hsu, S. C. Huang, Y. W. Shih and C.-H. Luo, “Designing Low power of Sigma Delta Modulator for Biomedical Application,”Biomed Eng-App Bas C, no. 18, pp. 181–185, Aug. 2005.
指導教授 薛木添(Muh-TianShiue) 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明