參考文獻 |
Reference
[1] Cahay, “Quantum Confinement VI: Nanostructured Materials and Devices : Proceedings of the International Symposium.“ The Electrochemical Society, (2012).
[2] H. Haug, S. W. Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors.“ World Scientific. (1994). C. Weisbuch and B. Vinter, “Quantum semiconductor structures,“ Academic Press Inc, San Diego, (1991).
[3] Y. Wang, N. Herron, ”Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, ” J. Phys. Chem., 95, 525 (1991)
[4] C. E. Bottani, C. Mantini, P. Mailani, M. Manfredini, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, “Raman, optical-absorption, and transmission electron microscopy study of size effects in germanium quantum dots,” Appl. Phys. Lett., 69, 2409 (1996).
[5] A. Imre1, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, W. Porod, ”Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata, ” Science, 311, 205 (2006)
[6] I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and G. L. Snider, ”Digital Logic Gate Using Quantum-Dot Cellular Automata,” Science, 284, 289 (1999)
[7] L. Robledo, J. Elzerman, G. Jundt, M. Atatüre, A.Högele, S. Fält, and A. Imamoglu, “Conditional Dynamics of Interacting Quantum Dots,” Science, 320, 772 (2008).
[8] T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama, “Bidirectional counting of single electrons,” Science, 312, 1634 (2006).
[9] M. A. Green, “Third Generation Photovoltaics: Solar Cells for 2020 and Beyond,” Phys. E, 14, 65 (2002).
[10] K. Laouthaiwattana, O. Tangmattajittaku, S. Suraprapapich, S. Thainoi, P. Changmuang, S. Kanjanachuchai, S. Ratanathamaphan, and S. Panyakeow, “Optimization of stacking high-density quantum dot molecules for photovoltaic effect,” Sol. Energy Mater. Sol. Cells, 93, 746 (2009).
[11] O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Y. A, Pashkin, Y. Nakamura, and J. S. Tsai, “Single artificial-atom lasing,” Nature, 449, 588 (2007).
[12] P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G, Perera, “Characteristics of a Tunneling Quantum-dot Infrared Photodetector Operating at Room Temperature,” Appl. Phys. Lett., 86, 191106 (2005).
[13] I. L. Medintz, H. T. Uyeda, E. R. Goldman and Hedi. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing, “ Nature Materials, 4, 435 (2005)
[14] C. Y. Zhang, H. C. Yeh, M. T. Kuroki and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,“ Nature Materials, 4, 826 (2005)
[15] L. Zhung, L. Guo, and S. Chou, “Silicon single-electron quantum-dot transistor switch operating at room temperature,” Appl. Phys. Lett., 72, 1205 (1998).
[16] M. Saitoh, H. Harata, and T. Hiramoto, “Room-temperature demonstration of low-voltage and tunable static memory based on negative differential conductance in silicon single-electron transistors,” Appl. Phys. Lett., 85, 6233 (2004).
[17] P. W. Li, W. M. Liao, D. M. T. Kuo, S. W. Lin, P. S. Chen, S. C. Lu and M. J. Tsai, “Fabrication of a germanium quantum-dot single-electron transistor with large Coulomb-blockade oscillations at room temperature,” Appl. Phys. Lett., 85, 1532 (2004).
[18] P. Michler, A. Kiraz1, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science., 290, 2282 (2000).
[19] W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett., 96, 117401 (2006).
[20] Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically Driven Single-Photon Source,” Science, 295, 102 (2002).
[21] L. Robledo, J. Elzerman, G. Jundt, M. Atatüre, A. Högele1, and S. Fält, “Conditional Dynamics of Interacting Quantum Dots,“ Science, 9, 772, (2008)
[22] Y. Hu, H. O. H. Churchil, D.. J. Reilly, J. Xiang, C. M. Lieber, and C. M. Marcus, “A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor,“ Nature Nanotechnology, 2, 622 (2007).
[23] L. C. Ma, R. Subramanian, H. W. Huang, V. Ray, C. U. Kim, S. J. Koh, “Electrostatic funneling for precise nanoparticle placement: a route to wafer-scale integration.,” Nano Lett., 7, 439 (2007).
[24] G. Daniele, Z. Natalia, S. Cheng, F. Maria, F. Sirine, V. Tony, G. Giulia, “Solution Synthesis of Germanium Nanocrystals: Success and Open Challenges,” Nano Lett., 4, 597 (2004).
[25] J. D. Gillaspy, “Highly charged ions,” J. Phys. B: At. Mol. Opt. Phys, 34, R93 (2001).
[26] R. D. Schaller, and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion,” Phys. Rev. Lett., 92, 186601 (2004).
[27] M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett., 7, 2506 (2007).
[28] Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B, 51, 1658 (1995).
[29] M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, “Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs,” Annu. Rev. Mater.Res., 39, 203 (2009).
[30] R. Krithivasan, G. Niu, J. D. Cressler, S. M. Currie,K. E. Fritz, R. A. Reed, P. W. Marshall, P. A. Riggs, B. A. Randall, and B.Gilbert, “An SEU hardening approach for high-speed SiGe HBT digital logic,” IEEE Trans. Nucl. Sci., 50, 2126 (2003).
[31] D. Nam, D. Sukhdeo, S. L. Cheng, A. Roy, K. C. Huang, M. Brongersma,Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett., 100, 131112 (2012).
[32] R.Camacho-Aguilera, Y. Cai, N. Patel, J. Bessette, M. Romagnoli, L. C.Kimerling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Exp., 20, 11316 (2012).
[33] X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater., 3, 34 (2011).
[34] K. L. Wang, D. Cha, J. Liu, and C. Chen, “Ge/Si self-assembled quantum dots and their optoelectronic device applications,” Proc. IEEE, 95, 1866 (2007).
[35] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett., 82, 2044 (2003).
[36] E. Kasper, “Properties of Strained and Relaxed Silicon Germanium,” INSPEC, London, (1995).
[37] M. L. Lee and E. A. Fitzgerald, “Optimized strained Si/strained Ge dualchannel heterostructures for high mobility p- and n-MOSFETs,” IEDM Tech.Dig., 429 (2003).
[38] Y. Maeda, N. Tsukamoto, and Y. Yazawa, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett., 59, 3168 (1991).
[39] S. Cosentino, S. Mirabella, M. Miritello, G. Nicotra, R. L. Svio, F. Simone, C. Spinella, and A. Terrasi, “The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica,” Nanoscale Res. Lett., 6, 135 (2011).
[40] I. Stavarche, A. M. Lepadatu, T. Stoica, and M. L. Ciurea, “Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2,” Appl. Surf. Sci., 285, 175 (2013).
[41] Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett., 61, 2187 (1992).
[42] P. K. Giri, S. Bhattacharyya, S. Kumari, K. Das, S. K. Ray, B. K. Panigrahi, and K. G. M. Nair, “Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO2 matrix,” J. Appl. Phys., 103, 103534 (2008).
[43] J. G. Zhu, C. W. White, J. D. Budai, S. P. Withrow, and Y. Chen, “Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices,” J. Appl. Phys., 78, 4386 (1995).
[44] J. V. Borany, R. Grötzschel, K. H. Heinig, A. Markwitz, W. Matz, B. Schmidt, and W. Skorupa, “Multimodal impurity redistribution and nanocluster formation in Ge implanted silicon dioxide films,” Appl. Phys. Lett., 71, 3215 (1997).
[45] S. Mirabella, S. Cosentino, A. Gentile, G. Nicotra, N. Piluso, L. V. Mercaldo, F. Simone, C. Spinella, and A. Terrasi, “Matrix role in Ge nanoclusters embedded in Si3N4 or SiO2,” Appl. Phys. Lett., 101, 011911 (2012).
[46] Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,“ Nanotechnology, 21, 095305 (2010).
[47] E. S. Kim, N. Usami and Y. Shiraki, “Control of Ge dots in dimension and position by selective epitaxial growth and their optical properties,“ Appl. Phys. Lett., 72, 1617 (1998).
[48] M. W. Dashiell, U. Denker, C. Müller, G. Costantini, C. Manzano, K. Kern and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,“ Appl. Phys. Lett., 80, 1279 (2002).
[49] Y. Tu and J. Tersoff, “Coarsening, Mixing, and Motion: The Complex Evolution of Epitaxial Islands,” Phys. Rev. Lett., 98, 096103 (2007).
[50] M. Brehm, M. Grydlik, F. Schaffler, and O. G. Schmidt, “Evolution and coarsening of Si-rich SiGe islands epitaxially grown at high temperatures on Si (001),” Microelectronic Engineering, 125 , 22(2014).
[51] T. Stoica and E. Sutter, “Ge dots embedded in SiO2 obtained by oxidation of Si/Ge/Si nanostructures,” Nanotechnology, 17, 4912 (2004).
[52] E. Sutter, F. Camino, and P. Sutter, “One-step synthesis of Ge-SiO~2 core-shell nanowires,” Appl. Phys. Lett., 94, 083109 (2009).
[53] Q. Li, S. M. Han, S. R. J. Brueck, S. Hersee, Y. B. Jiang, and H. Xu, “Selective growth of Ge on Si (100) through vias of SiO2 nanotemplate using solid source molecular beam epitaxy,” Appl. Phys. Lett., 83, 5032 (2003).
[54] M. Grydlik, G. Langer, T. Fromherz, F. Schaffler, M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology, 24, 105601 (2013).
[55] F. Liu, A. H. Li, M. G. Lagally, “Self-assembly of two-dimensional islands via strain-mediated coarsening,” Phys. Rev. Lett., 87, 126103 (2001).
[56] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu, M. J. Tsai, “Formation of atomic-scale Germanium quantum dots by selective oxidation of SiGe/Si-on-Insulator,” Appl. Phys. Lett., 83, 4628 (2003).
[57] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum-dots formed by thermal oxidation of Si1-xGex-on-insulator,” IEDM Tech.Dig., 18, 145402 (2007).
[58] C. Y. Chien, Y. R. Chang, R. N. Chang, M. S. Lee, W. Y. Chen, T. M. Hsu, and P. W. Li, “Formation of Ge quantum dots array in layer-cake technique for advanced photovolatics,” Nanotechnology, 21, 505201 (2010).
[59] K. H. Chen, C. Y. Chien, W. T. Lai, and P. W. Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology., 21, 055302 (2010).
[60] C. Y. Chien, Y. J. Chang, K. H. Chen, W. T. Lai, T. George, A. Scherer, and P. W. Li, “Nanoscale, catalytically-enhanced local oxidation of silicon-containing layers by “burrowing” Ge quantum dots,” Nanotechnology, 22, 435602 (2011).
[61] C. C. Wang, K. H. Chen, I. H. Chen, H. T. Chang, W. Y. Chen, J. C. Hsu, S. W. Lee, T. M. Hsu, M. T. Hung, P. W. Li, “CMOS-compatible generation of self-organized 3D Ge quantum dot array for photonic and thermoelectric applications,” IEEE Trans Nanotechnology, 11,657 (2012).
[62] G. L. Chen, D. M. T. Kuo, W. T. Lai, and P. W. Li, “Tunneling spectroscopy of germanium quantum-dot in single-hole transistors with self-aligned electrodes,” Nanotechnology, 18, 475402 (2007).
[63] I. H. Chen, K. H. Chen, D. M. T. Kuo, and P. W. Li, “Single Ge quantum dot placement along with self-aligned electrodes for effective management of single charge tunneling,” IEEE Trans. Electron Devices, 59, 3224 (2012).
[64] M. H. Kuo, C. C. Wang, W. T. Lai, T. George and P. W. Li,“Designer” Ge Quantum Dots on Si: A novel heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett.., 101, 223107 (2012).
[65] C. C. Wang, P. H. Liao, M. H. Kuo, Tom George, and P. W. Li, “The curious case of exploding quantum dots: Anomalous migration and growth behavior of Ge under Si oxidation,” Nanoscale Research Lett., 8, 192 (2013).
[66] W. Ostwald, ”Lehrbuch der allgemeinen chemie,” Volume 2. Germany, Leipzig. W. Engelmann, (1896).
[67] L. Ratke, P. W. Voorhees Growth and coarsening: Ostwald ripening in material processing. Springer Berlin Heidelberg, 117 (2002).
[68] M. Zinke-Allmang, L. C. Feldman, M. H. Grabow, “Clustering on surfaces,” Surf. Sci.Rep., 16, 377 (1992).
[69] K. H. Chen, C. C. Wang, Tom George, and P. W. Li, “The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale Research Lett., 9, 339 (2014).
[70] K. H. Chen, C. C. Wang, Tom George, and P. W. Li, “The pivotal role of SiO for formation in the migration and Ostwald Ripening of Ge quantum dots,” Appl. Phys. Lett., 105, 122102 (2014).
[71] G. Kozlowski, Y. Yamamoto, J. Bauer, M. A. Schubert, B. Dietrich, B. Tillack and T. Schroeder, “Selective Ge heteroepitaxy on free-standing Si (001) nanopatterns: A combined Raman, transmission electron microscopy, and finite element method study,” J. Appl. Phys., 110, 053509 (2011).
[72] G. Kozlowski, Y. Yamamoto, J. Bauer, M. A. Schubert, B. Dietrich, B. Tillack and T. Schroeder, “Compliant substrate versus plastic relaxation effects in Ge nanoheteroepitaxy on free-standing Si(001) nanopillars,” Appl. Phys. Lett., 99, 141901 (2011).
[73] A. Olzierski, A. G. Nassiopoulou, I. Raptis and T. Stoica, “Two-dimensional arrays of nanometre scale holes and nano-V-grooves in oxidized Si wafers for the selective growth of Ge dots or Ge/Si hetero-nanocrystals,” Nanotechnology, 15, 1695 (2004).
[74] T. Stoica, V. Shushunova, C. Dais, H. Solak and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on pre-patterned silicon substrates,” Nanotechnology, 18, 455307 (2007).
[75] B. Leroy, “Stresses and silicon interstitials during the oxidation of a silicon substrate,” Philo Mag B, 55, 159 (1987)
[76] N. Guillemot, D. Tsoukalas, C. Tsamis, J. Margail, A. Papon, and J. Stoemenos, “Suppression mechanisms for oxidation stacking faults in silicon oninsulator,” J. Appl. Phys., 71, 1713 (1992)
[77] D. Tsoukalas, C. Tsamis, J. Stoemenos, “Investigation of silicon interstitial reactions with insulating films using the silicon wafer bonding technique,” Appl. Phys. Lett., 63, 3167 (1993)
[78] B. Leroy, “Kinetics of growth of the oxidation stacking faults,” J. Appl. Phys., 50, 7996 (1979)
[79] T. Y. Tan, U. Goesele, “Growth kinetics of oxidation‐induced stacking faults,” Appl. Phys. Lett., 39, 86 (1981)
[80] S. M. Hu, “Formation of stacking faults and enhanced diffusion in the oxidation of silicon,” J. Appl. Phys., 45, 1567 (1974)
[81] D. A. Antoniadis, and I. Moskowitz, “Diffusion of substitutional impurities in silicon at short oxidation times: an insight into point defect kinetics,” J. Appl. Phys., 53, 6788 (1982)
[82] M. S. Carroll, C. L. Chang, J. C. Strum, T. Buyuklimnali, “Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation,” Appl. Phys. Lett., 73, 3695 (1988)
[83] L. A. Nesbiti, “Annealing characteristics of Si‐rich SiO2 films,” Appl. Phys. Lett., 46, 38 (1985)
[84] R. Tromp, G. W. Rubloff, P. Balk, F. K. LeGoues, and E. J. van Loenen, “High-Temperature SiO2 Decomposition at the SiO2/Si Interface,” Phys. Rev. Lett., 55, 2332 (1985)
[85] K. Hofmann and S. I. Raider, “Acceleration Factors for the Decomposition of Thermally Grown SiO2 Films,” J. Electrochem. Soc., 134, 240 (1987)
[86] B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkel, and G. Lucovsky, “Investigation of postoxidation thermal treatments of Si/SiO2 interface in relationship to the kinetics of amorphous Si suboxide decomposition,” J. Vac. Sci. Technol B, 16, 2171 (1998)
[87] D. Starodub, E. P. Gusev, E. Garfunkel, and T. Gustafsson, “Silicon oxide decomposition and desorption during the thermal oxidation of Silicon” Surf. Rev. Lett., 6, 45 (1999)
[88] A. A. Stekolnikov and F. Bechstedt, “Shape of free and constrained group-IV crystallites: Influence of surface energies” Phys. Rev. B, 72, 125326 (2005)
[89] E. S.Marstein, A. E. Gunnaes, U. Serincan, S. Jorgensen, A. Olsen, R. Turan, and T. G. Finstad, “Mechanisms of void formation in Ge implanted SiO2 films” Nucl. Instrum. Methods Phys. Rev., Sect. B 207, 424 (2003)
[90] W. K. Choi, V. Ho, V. Ng, Y. W. Ho, S. P. Ng, and W. K. Chim, “Mechanisms of void formation in Ge implanted SiO2 films” Appl.Phys. Lett., 86, 143114 (2005)
[91] G. K. Celler, L. E. Trimble, T. T. Sheng, S. G. Kosinski, and K. W. West, “Precipitation of Group V elements and Ge in SiO2 and their drift in a temperature gradient,” Appl. Phys. Lett., 53, 1178 (1988)
[92] G. K. Celler and L. E. Trimble, “Catalytic Effect of SiO on Thermomigration of Impurities in SiO2,” Appl. Phys. Lett., 54, 1427 (1989)
[93] R. C. Weast, D. R. Lide, M. J. Astle, and W. H. Beyer “CRC Handbook of Chemistry and Physics“, 70th ed., CRC, Boca Raton, (1989)
[94] W. L. Jolly and W. M. Latimer, “The Equilibrium Ge(s) + GeO2(s) = 2GeO(g). The Heat of Formation of Germanic Oxide,” J. Am. Chem. Soc., 74, 5757 (1952)
[95] M. Nagamori, J. A. Boivin, and A. Claveau, “Gibbs free energies of formation of amorphous Si2O3, SiO and SiO2,” J. Non-Cryst., 189, 270 (1995)
[96] P. H. Liao, T. C. Hsu, K. H. Chen, T. H. Cheng, T. M. Hsu, C. C. Wang, T. George, and P. W. Li, “Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Lett., 105, 172106 (2014)
[97] L. Tsetseris and S. T. Pantelides, “Oxygen Migration, Agglomeration, and Trapping: Key Factors for the Morphology of the Si−SiO2 Interface,” Phys. Rev. Lett., 97, 11601 (2006)
[98] M. A. Lamkin, and F. L. Riley, “Oxygen mobility in silicon dioxide and silicate glasses: a review,” J. European Ceramic Soc., 10, 347 (1992)
[99] R. H. Doremus, “Oxidation of silicon by water and oxygen and diffusion in fused silica,” J. Phys. Chem., 80, 1773 (1976)
[100] E. L. Williams, “Diffusion of Oxygen in Fused Silica,” J. Am. Ceram. Soc., 48, 190 (1965)
[101] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of Silicon,” J. Appl. Phys., 36, 2770 (1965)
[102] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era vol. 1, Chap. 7, Lattice Press, California,1986
[103] J. Eugene, F. K. LeGoues, V. P. Kesan, S. S. Iyer and F. M. d’Heurle, “Diffusion versus oxidation rates in silicon‒germanium alloys.,” Appl. Phys. Lett., 59, 78 (1991)
[104] F. K. LeGoues, R. Rosenberg and B. S. Meyerson, “Kinetics and mechanism of oxidation of SiGe: dry versus wet oxidation ,” Appl. Phys. Lett., 54, 644 (1989)
[105] TMA TSUPREME4 2008 Version 2008.2 Technology Modeling Associates, Inc.
[106] M. Nagase, A. Fujiwara, K. Yamazaki, Y. Takahashi, K. Murase and K. Kurihara, “Si nanostructures formed by pattern-dependent oxidation,” Microelectron. Eng., 41/42, 527 (1998)
[107] K. K. Likharev, “Si nanostructures formed by pattern-dependent oxidation,” Proc. IEEE, 87, 606 (1999)
[108] H. Grabert and M. H. Devoret, “Single Charge Tunneling—Coulomb Blockade Phenomena in Nanostructures,” (New York: Plenum) (1992)
[109] J. W. Han, J. S. Oh, and M. Meyyappan, “Vacuum nanoelectronics: Back to future?-Gate insulated nanoscale vaccum channel transistor,” Appl. Phys. Lett., 100, 213505 (2012)
|