以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:48 、訪客IP:3.147.126.146
姓名 鄭仲庭(Chung-Ting Cheng) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱 整合多個搜索引擎結果提高地標搜索的準確性
(Improving POI Search Effectiveness by Integrating Multiple Search Results)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在這網路普及的時代,透過智慧行動裝置(location-based services)查詢附近的店家、地標等POI(Points of Interest)是人們生活中常見的需求。現今人們習慣在Google Map上找尋POI,但並不是所有我們想要的POI在Google Map上都找的到,有些POI只會在網頁上出現但不會出現在地圖上,所以Google Map的POI仍然不足,因此整合多來源的POI,提供一個有效檢索POI的地圖服務系統是本文的目標。人們在地圖服務系統上給予查詢詞,可能是要找多個符合查詢的POI,也有可能是某個特定的POI;在搜尋範圍的考量上,人們可能想找到附近週遭相關的POI,也有可能是不在範圍的POI;POI的排序方式也是個問所在,查詢結果可能需要以距離或相關性來排序。若地圖服務系統的POI相關資訊不充足,那麼效能就會低落。除了透過檢索系統獲得相關的POI,查詢詞擴展也是個可以幫助人們找到相關POI的方法。
在本論文中,我們的系統目標在於提高搜尋結果的精準度,方法可分為兩個部分,第一部分為POI檢索,我們查詢多個搜尋服務的POI結果並設計數個特徵,接著建立預測模組,找出和查詢詞相關的POI。第二部分為標籤推薦,我們將POI描述句彙整成一個語料庫,並經由主題模型分析取得主題詞彙,透過這些詞彙獲得POI的標籤,並建立詞彙和標籤的關係二分圖,最後根據查詢詞做相對應的標籤推薦。
摘要(英) With the popularity of internet, the demand of people’s lives is searching local POI (Points of Interest) by intelligent mobile device (location-based services) e.g., stores, landmarks. Today, people used to look for POI on Google Map. However, not all that we want POIs on the Google Map. Some POIs appear on the web page but does not appear on the map, so the POI is still insufficient on the Google Map. Therefore, integrating multiple sources and providing an effective retrieval POI map service is our goal in this paper. People give a query on the map service. They may look for multiple matching query of POIs or a specific POI. In the search scope part, people may want to look for relevant POIs in the neighborhood or out of the scope. How to sort the POI is also a problem. The search results may need to sort by relevance or distance. If the POI Information is insufficient in the map service, the effectiveness would be low. In addition to finding relevant POIs by retrieval system, query expansion is a good method to help people find relevant POIs,
In this paper, our goal is to improve the effectiveness of search results. The approach has two parts. The first part is learning to rank. We design several features and get the most relevant POI to query through correlative prediction. The second part is query expansion. After collecting POI descriptions and clustering it by LDA (Latent Dirichlet allocation) , we build a bi-partite graph and give a certain domain of words by graph.
關鍵字(中) ★ 地標查詢
★ 查詢詞擴展
★ 學習排名關鍵字(英) 論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 v
表目錄 vi
1. 簡介 1
2. 相關研究 4
2.1. 地圖服務系統 5
2.2. 資訊檢索 4
3. 系統架構及方法 8
3.1. POI 排序 10
3.1.1. 查詢演算法 10
3.1.2. 特徵萃取 11
3.1.3. 學習排序 11
3.2. 相關詞與標籤關聯性 15
3.2.1標籤生成 16
3.2.2詞彙標籤二分圖建構 18
4. 實驗 19
4.1. 資料集 19
4.2. 評估 22
4.3. POI 檢索效能 23
4.4. 標籤點擊率 26
4.5. 討論 27
5. 結論 30
6. 未來工作 31
參考 32
附錄-系統介面 34
參考文獻 [1] L. Aleksandra, P. Nikita, S. Pavel, "Web search without ′stupid′ results", Pages 943-946, SIGIR, 2014.
[2] S. Auer, J. Lehmann and S. Hellmann, "Linkedgeodata: Adding a spatial dimension to the web of data". ISWC, LNCS, vol. 5823, Pages 731-746. Springer, Heidelberg, 2009.
[3] C. B. Jones and R. S. Purves, "International Journal of Geographical Information Science", Pages 219-228, 2008.
[4] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, S. Hellmann, "DBpedia-A crystallization point for the Web of Data. Web Semantics: Science, Services and Agents", Pages 154-165, WWW, 2009.
[5] D.M. Blei, A.Y. Ng, M.I. Jordan, "Latent Dirichlet allocation", Journal of Machine Learning Research, Pages 993-1022, 2003.
[6] C.C. Chang, C.J. Lin, "LIBSVM: A library for support vector machines", Volume 2 Issue 3, April 2011, Article No. 27.
[7] M. Costa, F. M Couto, M. J. Silva, "Learning temporal-dependent ranking models", Pages 757-766, SIGIR, 2014.
[8] Y. Y. Huang and C.H. Chung, "A Tool for Web NER Model Generation Based on Google Snippets", National Central University graduated paper, 2015.
[9] S. Huang, Q. Zhao, P. Mitra , C.L. Giles, "Query Expansion Using Topic and Location", Pages 619-624, IEEE, 2007.
[10] S. Jim, "Mobile Query Searches Increase, Location Extensions Need to Keep Pace", News, 2014.
[11] T. Joachims, "Optimizing Search Engines using Clickthrough Data", Pages 133-142, SIGKDD, 2002.
[12] T.Y. Kao and C.H. Chung., "Points of Interest Extraction from Unstructured Web", National Central University graduated paper, 2015.
[13] Y. Liu, R. Song, Y. Chen, J.Y. Nie, J.R. Wen, "Adaptive query suggestion for difficult queries", Pages 15-24, SIGIR, 2012.
[14] T. Matuszka and A. Kiss, "Geodint: towards semantic Web-based geographic data integration", ACIIDS, Part I, LNAI 8397, Pages 191-200, 2014.
[15] H. Morgan, H. Claudia, E. David, "Learning by Example: Training Users with High-quality Query Suggestions", SIGIR, 2015.
[16] J. M. Noguera, M. J. Barranco, R. J. Segura, L. Martínez, "A mobile 3D-GIS hybrid recommender system for tourism", Volume 215, December 2012, Pages 37-52, 2012.
[17] R. Reinanda, E. Meij, M. D. RijkeMining, "Mining, Ranking and Recommending Entity Aspects", SIGIR, 2015.
[18] M. Sanderson, J. Kohler, "Analyzing Geographic Queries", SIGIR, 2004.
[19] C. Stefano, G. Davide, L. D. Angelica, M. Amdrea and Maurizio, T., "Geo data annotator: a Web framework for collaborative annotation of geographical datasets" WWW, Florence, Italy, 2015.
[20] J. Wang, C. Kang, Y. Chang, J. Han, "A Hierarchical Dirichlet Model for Taxonomy Expansion for Search Engines", Pages 961-970, WWW, 2014.
指導教授 張嘉惠(Chia-Hui Chang) 審核日期 2015-7-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare