博碩士論文 102521047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.144.43.78
姓名 姜彥丞(Yan-Cheng Jiang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵高電子遷移率場效電晶體之表面披覆層研究
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文內容主要探討氮化鋁鎵/氮化鎵高電子遷移率場效電晶體使用不同表面披覆層對電性的影響。實驗使用三種表面披覆層包括傳統氮化鎵披覆層(GaN cap),p型氮化鎵披覆層(p-GaN cap)和在MOCVD裡成長的氮化矽為披覆層(in-situ SiN cap)。實驗目的為利用不同的披覆層來提升元件的崩潰電壓和改善元件的動態電阻特性,並在製作蕭特基閘極元件前會先進行一系列的材料分析。
本實驗所製作的蕭特基閘極電晶體,在in-situ SiN cap元件上有低的閘極漏電流、(I_on/I_off )電流比值為1.71×108、低的次臨界斜率82 mV/dec以及有最大的元件崩潰電壓在汲極電流1 mA/mm下LGD = 20 μm約為1200 V。在動態特性方面p-GaN cap元件和in-situ SiN cap元件在汲極電壓100 V下動態電阻比值皆比GaN cap好,此兩種結構動態電阻比值分別為1.8和1.2。此外也利用脈衝量測去觀察三種表面披覆層之表面缺陷特性。
最後利用矽基板偏壓的方式去觀察元件在進行切換開關時電子被表面缺陷捕捉的情形,其中在GaN cap元件在量測上有較差的表現,電流回復到穩態時間最長,以及利用變溫量測的方式去計算缺陷的活化能。
摘要(英) In this work, we focus on AlGaN/GaN HEMT with different cap layers which may influence on electrical property. We use three types of cap layers including conventional GaN cap,p-type GaN cap and in-situ SiN grown in the MOCVD. The purpose of this study is to improve device breakdown voltage and dynamic Ron. Material analysis is discussed before fabricating Schottky device.
Among the Schottky devices with different cap layers, in-situ SiN cap device has the lowest gate leakage current, high on/off current ratio 1.71×108, subthreshold slope at 82 mV/dec, and have the largest breakdown voltage about 1200V at LGD = 20 μm. In terms of dynamic Ron, p-GaN device and in-situ SiN device stressed at VDS = 100V show better results than GaN cap. The corresponding dynamic Ron ratio are 1.8 and 1.2, respectively. In addition, we use pulse measurement to investigate the surface trap in these three structure.
Finally, in this experiment we use substrate bias to separate device with the contributions of surface- and buffer-induced trapping effect. Among three structure, device with GaN cap show the worst performance, the current recovery to the steady state requiring longer time. The activation energy associated with the defects are analyzed by temperature-dependent dynamic Ron measurement.
關鍵字(中) ★ 氮化鋁鎵
★ 氮化鎵
關鍵字(英) ★ AlGaN
★ GaN
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1前言 1
1.2氮化鎵高電子遷移率場效電晶體發展與表面鈍化層相關研究 3
1.3本論文研究動機與目的 9
1.4論文架構 9
第二章 氮化鋁鎵/氮化鎵場效電晶體於矽基板之磊晶結構與製程 10
2.1前言 10
2.2氮化鋁鎵/氮化鎵於矽基板之磊晶結構 10
2.3原子力顯微鏡觀測試片平坦度 14
2.4 X-射線繞射儀量測觀察磊晶品質 15
2.5霍爾量測與分析 18
2.6穿透式電子顯微鏡觀察 19
2.7蕭特基閘極場效電晶體製作 20
2.8結論 25
第三章 氮化鋁鎵/氮化鎵閘極場效電晶體特性分析與比較 26
3.1前言 26
3.2蕭特基閘極場效電晶體直流電性分析 26
3.3蕭特基閘極場效電晶體脈衝量測與分析 40
3.4 結論 44
第四章 氮化鋁鎵/氮化鎵場效電晶體動態特性量測與變溫效應 46
4.1前言 46
4.2蕭特基閘極場效電晶體動態特性分析 46
4.3氮化鋁鎵/氮化鎵場效電晶體變溫動態電阻量測 51
4.4矽基板偏壓下動態電阻量測簡介 57
4.5蕭特基閘極電晶體矽基板偏壓之電流崩塌效應分析與比較 59
4.6蕭特基閘極電晶體變溫特性 64
4.7結論 66
第五章 結論與未來展望 67
參考文獻 [1] L. F. Eastman and U. K. Mishra, “The toughest transistor yet GaN transistors,” IEEE Spectr, vol. 3, May 2002.
[2] Wayne Johnson and Edwin L. Piner, “GaN HEMT Technology” W. Johnson., Kopin Corporation.,2012
[3] B. Nabet, J. Culp, and F. Castro, “Effects of electron confinement on thermionic emission current in a modulation doped heterostructure,” J. Appl. Phys., vol. 85, no. 5, pp. 2663–2666, Mar. 1999.
[4] Y. J. Lin, “Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current-voltage measurements,” Appl. Phys. Lett., vol. 86, no. 12, pp. 122109-1–122109-3, Mar. 2005.
[5] M. Asif Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor”, IEEE Electron Device Lett, vol. 21, no. 2, February 2000
[6] T. Hashizume, S. Ootomo, T. Inagaki, and H. Hasegawa, “Surface passivation of GaN and GaNÕAlGaN heterostructures by dielectric films and its application to insulated-gate heterostructure transistors”, J. Vac. Sci. Technol. B 21„4…, Jul/Aug 2003
[7] T. Hashizume, S. Ootomo, and H. Hasegawa, “Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric”, Appl. Phys. Lett,vol 83, no14 ,October 2003
[8]C. Liu, E. F. Chor and L. S. Tan, “Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-k dielectric for surface passivation and gate oxide”, Semicond. Sci. Technol. 22 (2007) 522–527
[9] C. Lee, H. Tserng, L. Witkowski, P. Saunier, S. Guo, B. Albert,R. Birkhahn, and G. Munns, “Effects of RF stress on power and pulsed IV characteristics of AlGaN/GaN HEMTs with field-plate gates,” Electron.Lett., vol. 40, no. 24, pp. 1147–1148, Nov. 2004.
[10] C. Lee, L. Witkowski, H.-Q. Tserng, P. Saunier, R. Birkhahn, D. Olson,G. Munns, S. Guo, and B. Albert, “Effects of AlGaN/GaN HEMT structure on RF reliability,” Electron. Lett., vol. 41, no. 3, pp. 155–157,Feb. 2005.
[11] V. Adivarahan, J. Yang, A. Koudymov, G. Simin, and M. Asif Khan, “Stable CW operation of field-plated GaN–AlGaN MOSFETs at 19 W/mm,” IEEE Electron Device Lett., vol. 26, no. 8, pp. 535–537, Aug. 2005
[12] G. Koley, V. Tilak, L. F. Eastman, and M. G. Spencer, “Slow transients observed in AlGaN/GaN HFETs: Effects of SiNx passivation and UV illumination,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 886–893, Apr. 2003.
[13] H. Kim, M. Thompson, V. Tilak, T. R. Prunty, J. R. Shealy, and L. F. Eastman, “Effects of SiN passivation and high-electric field on AlGaN–GaN HFET degradation,” IEEE Electron Device Lett., vol. 24, no. 7, pp. 421–423, Jul. 2003.
[14] D. K. Sahoo, R. K. Lal, H. Kim, V. Tilak, and L. F. Eastman, “High field effects in silicon nitride passivated GaN MODFETs,” IEEE Trans. Electron Devices, vol. 50, no. 5, pp. 1163–1170, May 2003.
[15] T. Mizutani, Y. Ohno, M. Akita, S. Kishimoto, and K. Maezawa, “A study on current collapse in AlGaN/GaN HEMTs induced by bias stress,” IEEE Trans. Electron Devices, vol. 50, no. 10, pp. 2015–2020, Oct. 2003.
[16] P. Valizadeh and D. Pavlidis, “Effects of RF and DC stress on AlGaN/GaN, MODFETs: A low-frequency noise-based investigation,” IEEE Device and Materials Reliability., vol. 5, no. 3, pp. 555–563, Sep. 2005.
[17] A. P. Edwards, J. A. Mittereder, S. C. Binari, D. Scott Katzer, D. F. Storm, and J. A. Roussos, “Improved reliability of AlGaN–GaN HEMTs using an NH3 plasma treatment prior to SiN passivation,” IEEE Electron Device Lett., vol. 26, no. 4, pp. 225–227, Apr. 2005.
[18] Y. Guhel, B. Boudart, N. Vellas, C. Gaquière, E. Delos, D. Ducatteau, Z. Bougrioua, and M. Germain, “Impact of plasma pre-treatment before SiNx passivation on AlGaN/GaN HFETs electrical traps,” Solid State Electron., vol. 49, no. 10, pp. 1589–1594, Oct. 2005.
[19] D. J. Meyer, J. R. Flemish, and J. M. Redwing, “Plasma surface pretreatment effects on silicon nitride passivation of AlGaN/GaN HEMTs,” in Proc. CS MANTECH Conf., May 14/15, 2007, pp. 305–307.
[20] Thompson, R., et al.: ‘Improved fabrication process for obtaining high power density AlGaN=GaN HEMTs’. IEEE GaAs IC Symp. 25th Annual Technical Digest, 2003, p. 298
[21] Gillespie, J., et al.: ‘A novel process for reduced dispersion effects in AlGaN/GaN HEMTs’. CS ManTech Tech. Digest, New Orleans, LA, USA, April 2005, p. 233
[22] T. Prunty, J. Smart, E. Chumbes, B. Ridley, L. Eastman, and J. Shealy, IEEE Conference on High Performance Devices, edited by M. G. Adlerstein, Ithaca, NY, 7–9 August 2000 unpublished, Vol. IV-6, p. 208
[23] J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, S.Degroote, M. R. Leys, M.Germain, and G. Borghs ‘Improvement of AlGaN ∕ GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer’, Journal of Applied Physics 98, 054501 (2005)
[24] Masayuki Kuroda, Tomohiro Murata, Satoshi Nakazawa, Toshiyuki Takizawa, Masaaki Nishijima, Manabu Yanagihara, Tetsuzo Ueda, and Tsuyoshi Tanaka‘High fmax with High Breakdown Voltage in AlGaN/GaN MIS-HFETs Using In-situ SiN as Gate Insulators’, Compound Semiconductor Integrated Circuits Symposium, 2008. CSIC ′08. IEEE
[25] Marleen Van Hove, Sanae Boulay, Sandeep R. Bahl, Steve Stoffels, Xuanwu
Kang,Dirk Wellekens, Karen Geens, Annelies Delabie, and Stefaan Decoutere, ‘CMOS Process-Compatible High-Power Low-Leakage AlGaN/GaN’, ELECTRON DEVICE LETTERS,2012
[26] P. Moens, C. Liu, A. Banerjee, P. Vanmeerbeek, P. Coppens, H. Ziad, A. Constant, Z. Li, H. De Vleeschouwer, J. Roig-Guitart, P. Gassot, F. Bauwens, E. De Backer, B. Padmanabhan, A. Salih, J. Parsey and M. Tack” An Industrial Process for 650V rated GaN-on-Si Power Devices using in-situ SiN as a Gate Dielectric” 26th International Symposium on Power Semiconductor Devices & IC′s June 15-19, 2014 Waikoloa, Hawaii
[27] S.Arulkumaran, T.Egawa and H.Ishikawa“Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors” Jpn. J. Appl. Phys. 44,2015
[28] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- Ga-face AlGaN/GaN heterostructures,” Appl. Phys., vol. 85, no. 6, pp.3222-333, Mar. 1999.
[29] D. Balaz, Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors, University of Glasgow, 2010.
[30] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Applied Physics Letters, Vol. 81, pp. 79 - 81, 2002.
[31] Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, E. A. Preble, “Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier,” Journal of Applied Physics, Vol. 101, pp. 024506 - 024506-4, 2007.
[32] Y. H. Choi, J. Lim, K. H. Cho, M.K. Han, “High Voltage AlGaN/GaN Schottky Barrier Diode Employing the Inductively Coupled Plasma-Chemical Vapor Deposition SiO2 Passivation, “ IEEE International Conference on Power Electronics, pp. 71 - 73, 2007.
[33]D. Jin and Jesus A. del Alamo, “Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs., June 2012.
[34] M. Faqir, G. Verzellesi, F. Danesin , G. Meneghesso, E. Zanoni., “Mechanisms of RF Current Collapse in AlGaN–GaN High Electron Mobility Transistors,” IEEE Trans. Device Mater. Reliab., vol. 8, no. 2, June 2008.
[35] A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, M.G. Mil_vidskii, S.J. Pearton, A.S. Usikov, N.M. Shmidt, A.V. Osinsky, W.V. Lundin, E.E. Zavarin, A.I. Besulkin, "Deep levels studies of AlGaN/GaN superlattices," Solid-State Electronics, vol. 47, pp. 671-676, 2003.
[36] M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, E. Zanoni, G. Meneghesso, and P. Moens, “Temperature-Dependent Dynamic RON in GaN-Based MIS-HEMTs: Role of Surface Traps and Buffer Leakage“ IEEE Transactions on electron devices, ” Vol. 62, pp. 782 - 787, 2015.
[37] W. Saito, T. Noda, M. Kuraguchi, Y. Takada, K. Tsuda, Y. Saito, I. Omura, M. Yamaguchi, “Effect of Buffer Layer Structure on Drain Leakage Current and Current Collapse Phenomena in High-Voltage GaN-HEMTs “IEEE IEEE Transactions on electron devices, VOL. 56, NO. 7, JULY 2009
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2015-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明