參考文獻 |
[1] GK. Singh. Solar power generation by Photovoltaic technology: a review. Energy 2013; 53: 1-13.
[2] H. Lund. Renewable energy strategies for sustainable development. Energy 2007; 32: 912-919.
[3] B. Urquhart, CW. Chow, D. Nguyen, J. Kleissl, M. Sengupta, J. Blatchford, D. Jeon. Towards intra-hour solar forecasting using two sky imagers at a large solar power plant. American Solar Energy Society 2012; 1-6.
[4] F. Wang, Z. Mi, S. Su, H. Zhao. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies 2012; 5: 1355-1370.
[5] M. Marquez, C.F.M. Coimbra. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Solar Energy 2011; 85: 746-756.
[6] N. Sharma, P. Sharma, D. Irwin, P. Shenoy. Predicting solar generation from weather forecasts using machine learning of the IEEE Conference on Smart Grid Communications 2011;528-533
[7] D. Heinemann, E. Lorenz, M. Girodo. Solar irradiance forecasting for the management of solar energy systems. Energy and Semiconductor Research Laboratory, Energy Meteorology Group, Oldenburg University 2006. 1-6.
[8] A. Heinle, A. Macke, A. Srivastav. Automatic cloud classification of whole sky images. Atmospheric Measurement Techniques Discussions 2010; 3: 269–299.
[9] M. Martínez-Chico, F.J. Batlles, J.L. Bosch. Cloud classification in a mediterranean location using radiation data and sky images. Energy 2011; 36: 4055-4062.
[10] H. Huang, S. Yoo, D. Yu, D. Huang, H. Qin. Correlation and local feature based cloud motion estimation. Proceeding of the Twelfth International Workshop on Multimedia Data Mining. ACM, 2012; 1-9.
[11] R. Marquez, C.F. Coimbra. Intra-hour DNI forecasting based on cloud tracking image analysis. Solar Energy 2013; 91: 327-336.
[12] CL. Fu, HY. Cheng. Predicting solar irradiance with all-sky image features via regression. Solar Energy 2013; 97: 537-550.
[13] HY. Cheng, CC. Yu, SJ. Lin. Bi-model short-term solar irradiance prediction using support vector regressors. Solar Energy 2014; 70: 121-127.
[14] SJ. Lin. Short-term Solar Irradiance Forecasting Based on Regression Model using All-Sky Image Features and Historical Data. National Central University. 2014.
[15] Hsu-Yung Cheng, Chih-Chang Yu, Block Based Cloud Classification with Statistical Features and Distribution of Local Texture Features. Atmospheric Measurement Techniques, vol. 8, pp. 1173–1182, Mar. 2015.
[16] JW. Bugler. The determination of hourly insolation on an inclined plane using a diffuse irradiance model based on hourly measured global horizontal insolation. Solar Energy 1997; 19: 477-491.
[17] R.E. Bird. A simple solar spectral model for direct-normal and diffuse horizontal irradiance. Solar Energy 1984; 32: 467-471.
[18] JW. Bugler. The determination of hourly insolation on an inclined plane using a diffuse irradiance model based on hourly measured global horizontal insolation. Solar Energy 1997; 19: 477-491.
[19] R.E. Bird. A simple solar spectral model for direct-normal and diffuse horizontal irradiance. Solar Energy 1984; 32: 467-471.
[20] R.E. Bird, C. Riordan. Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth′s surface for cloudless atmospheres. Journal of Climate Applied Meteorology 1986; 25: 87–97.
[21] S. Liang, A. Strahler, C. Walthall. Retrieval of land surface albedo from satellite observations: a simulation study. IEEE Geoscience and Remote Sensing Symposium Proceedings 1998; 3: 1286 – 1288.
[22] I. Reda, A. Andreas. Solar position algorithm for solar radiation applications. Solar Energy 2004; 76: 577–589.
[23] K.G.T. Hollands, R.G. Huget. A probability density function for the clearness index with applications. Solar Energy 1983; 30: 195-209.
[24] R. Perez, P. Ineichen, R. Seals, A. Zelenka. Making full use of the clearness index for parameterizing hourly insolation conditions. Solar Energy 1990; 45: 111-114.
[25] L.S. Aiken, S.G. West, S.C. Pitts. Handbook of Psychology. Research methods in psychology. Willey N. Y. 2003; 2: 483-507.
[26] C.M. Douglas, C.R. George, 2007. Applied statistics and probability for engineers 4th edition. 435-447.
[27] D. Basak, S. Pal, D.C. Patranabis. Support vector regression. Neural Information Processing –Letters and Reviews 2007; 11: 203-224.
[28] V. Vapnik, S.E. Golowich, A. Smola. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 1997; 281-287.
[29] Tsai-Cheng Chang, Tracking Clouds and Predicting occlusion of Sun in All-Sky Images, National Central University. 2014.
[30] D.M. Hawkins. The problem of over-fitting. Journal of Chemical Information and Computer Science 2004; 44: 1-12.
[31] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence 1995; 14: 1137-1145.
[32] CT. Chiang, YS. Lee, X.R. Li, CC. Liao. A RSCMAC based forecasting for solar irradiance from local weather information. Neural Network (IJCNN), The 2012 International Joint Conference on IEEE 2012; 1-7.
[33] S. Dunne, B Ghosh. Weather Adaptive Traffic Prediction Using Neurowavelet Models. IEEE Transactions on Intelligent Transportation Systems 2013; 14: 370 – 379.
[34] N. Sharma, P. Sharma, D. Irwin, and P. Shenoy. Predicting Solar Generation from Weather Forecasts Using Machine Learning. 2011 IEEE SmartGridComm 2011;528-533.
[35] M. Rizwan, M. Jamil, and D. P. Kothari. Generalized Neural Network Approach for Global Solar Energy Estimation in India. IEEE transaction on sustainable energy 2012; 3: 576 – 584.
[36] H. Beltran, E. Pérez, N. Aparicio. Daily Solar Energy Estimation for MinimizingEnergy Storage Requirements in PV Power Plants. IEEE transaction on sustainable energy 2013, 4: 474 – 481.
[37] A.S. Bin Mohd Shah, H. Yokoyama, and N. Kakimoto. High-Precision Forecasting Model of Solar Irradiance Based on Grid Point Value Data Analysis for an Efficient Photovoltaic System. IEEE transaction on sustainable energy 2015, 6: 474 – 481.
[38] E. Geraldi, F. Romano, and E. Ricciardelli. An Advanced Model for the Estimation of theSurface Solar Irradiance Under All AtmosphericConditions Using MSG/SEVIRI Data. IEEE transactions on geoscience and remote sensing 2012,50: 2934 – 2953.
[39] S. Achleitner, A. Kamthe, T. Liu and A. E. Cerpa. SIPS: Solar Irradiance Prediction System. Information Processing in Sensor Networks, IPSN-14 Proceedings of the 13th International Symposium on 2014, 225 – 236.
[40] “MOXA UPort 1150/1150I,”[Online]
Available: http://www.moxa.com.tw/Product/UPort_1150_1150I.htm.
|