博碩士論文 102323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.138.170.21
姓名 楊方君(Fang-Chun Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 旋轉儀中間隙流體與顆粒尺寸對潛變流之影響
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要針對不同間隙流體黏度及顆粒大小對於旋轉儀中潛變流的核心動態行為及顆粒傳輸性質進行探討。首先,利用不同比例的水及甘油調配出不同黏度的液體,並使用黏度計測量其黏度大小,接著藉由搖篩機篩出我們所需的顆粒尺寸範圍,最後進行三種顆粒尺寸及六種間隙流體黏度的實驗。實驗結果的部分首先使用攝影機進行長時間影像紀錄,藉此可分析計算出核心侵蝕率及相位領先率,再利用高速攝影機拍攝其運動過程並透過PTV進行傳輸性質之分析。
實驗結果顯示出間隙流體黏度及顆粒尺寸對於核心區域的顆粒潛變行為的影響是很大的。在核心動態行為的部分可以發現到,當間隙流體黏度越大時核心侵蝕率是越大的,同時相位領先率也會越快,且於乾系統時有較高的相位領先率。而於相同間隙流體黏度不同顆粒直徑時,顆粒越大侵蝕率會下降,相位領先率則會較快。至於在顆粒傳輸性質方面的結果則顯示,當間隙流體黏度越大,顆粒的平均速度、擾動速度和粒子溫度都會越來越小,同時在速度的變化趨勢方面也會越來越小,但在安息角角度及流動層厚度方面則會越來越大。當相同間隙流體黏度不同顆粒大小時,則是呈現顆粒直徑越大,剪應變率越小,特徵長度較大的情形,並且有較大的安息角角度及較小的流動層厚度。最後我們透過一無因次參數可以發現,核心侵蝕率與相位領先率對無因次參數分別是呈現不同數學模型的關係。
摘要(英) In this study, we report on experiments performed to investigate the core dynamic and the transport properties in a rotating drum with liquids of different viscosities and different particle sizes. In all of the slurry experiments, the drum was completely filled with the interstitial liquid. Several experiments were performed with mixtures of water and glycerin in a range of viscosities.
The experimental results indicate that both of the viscosity of the interstitial fluid and the particle size has a significant effect on the creeping flow in the slurry granular flow. When the particle size is the same, the increase in the liquid viscosity causes the erosion and precession to increase, while all the transport properties seem to decrease. However, the effect of particle size on the core dynamic and the transport properties are more complicated. A dimensionless variable is used to obtain the empirical formula. We found that the correlation between the dimensionless variable, erosion rate, and precession rate as an exponential function and a linear function respectively.
關鍵字(中) ★ 潛變流
★ 旋轉儀
★ 核心
★ 液體黏度
★ 顆粒大小
關鍵字(英) ★ creeping flow
★ rotating drum
★ core
★ fluid viscosity
★ particle size
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
符號說明 IX
一、簡介 1
1-1粒子流簡介 1
1-2 顆粒體在旋轉儀中的現象 3
1-3 旋轉儀中的運動型態 4
1-4 旋轉儀中滾動型態(rolling)下的顆粒運動情形 5
1-5 潛變流簡介 6
1-6 飽和液體對顆粒體運動現象的影響 7
1-7 研究動機 8
1-8 研究架構 9
二、實驗方法 10
2-1 實驗與觀測量測設備 10
2-2 實驗原理與方法 13
2-2-1 填充率之計算方法 13
2-2-2核心區域分析 14
2-2-3 Correlation簡介 16
2-2-4 粒子溫度之概念 18
2-3 實驗步驟 18
三、結果與討論 21
3-1潛變區域之物理現象與動態行為 21
3-1-1 侵蝕(Erosion) 21
3-1-2 相位領先(Precession) 22
3-2 顆粒傳輸性質及相關參數之分析和對動態行為之影響 23
四、結論 31
參考文獻 33
參考文獻 1. H.J. Herrmann, “Physics of granular media,” Chaos, Solitons and Fractals, Vol.6, pp.203-212, 1995.
2. S.M. Chaudeur, H. Berthiaux, and J.A. Dodds, “Experimental study of the mixing kinetics of binary pharmaceutical powder mixtures in a laboratory hoop mixer,” Chemical Engineering Science, Vol.57, pp.4053-4065, 2002.
3. R.A. Bagnold, “Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear,” Proceeding Royal Society of London, series A, Vol.225, pp. 49-63, 1954.
4. S. Ogawa., “Multi-temperature theory of granular materials,” In Proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, pp.208-217, 1978.
5. P. Bak, C. Tang and K. Wiesenfeld “Self-organized criticality: an explanation of 1 / f noise,” Physical Review Letters, Vol.59, pp.381-384, 1987.
6. H. Ahn, C.E. Brennen, and R.H. Sabersky, “Measurements of velocity fluctuation, density, and stressesin chute flows of granular materials,” Journal of Applied Mechanics, Vol. 58, pp. 792-803, 1991.
7. S.S. Hsiau and M.L. Hunt, “Shear-induced particle diffusion and logitndinal velocity fluctuations in a granular-flow mixing layer,” Journal of Fluid Mechanics, Vol. 251, pp. 299-313 , 1993.
8. V.V.R. Natarajan, M.L. Hunt, and E.D. Taylor, “Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow,” Journal of Fluid Mechanics, Vol. 304, pp. 1-25, 1995.
9. X.Y. Liu, E. Specht, and J. Mellmann, “Experimental study of the lower and upper angles of repose of granular materials in rotating drums,” Powder Technology, Vol. 154, pp. 125-131, 2005.
10. N.A. Pohlman, B.L. Severson, J.M. Ottino, and R.M. Lueptow, “Surface roughness effects in granular matter: influence on angle of repose and the absence of segregation,” Physical Review E, Vol. 73, pp. 031304, 2006.
11. G. Felix, V. Falk, and U. D’Ortona, “Segregation of dry granular material in rotating drum: experimental study of the flowing zone thickness,” Powder Technology, Vol. 128, pp. 314-319, 2002.
12. H. Henein, J.K. Brimacomble, and A.P. Watkinson, “Experimental study of transverse bed motion in rotary kilns,” Metallurgical and Materials Transactions B, Vol. 14, pp. 191-205, 1983.
13. J. Rajchenbach, “Flow in powders: from discrete avalanches to continuous regime,” Physical Review Letters., Vol. 65, pp. 2221-2224, 1990.
14. J. Mellmann, “The transverse motion of solids in rotating cylinders-forms of motion and transition behavior,” Powder Technology, Vol 118, pp. 251-270, 2001.
15. A.A. Boateng and B.V. Barr, “Modeling of particle mixing and segregation in the transverse plane of a rotary kiln,” Chemical Engineering Science, Vol. 51, pp. 4167-4181, 1996.
16. A. Ingram , J.P.K. Seville , D.J. Parker , X. Fan, and R.G. Forster, “Axial and radial dispersion in rolling mode rotating drums,” Powder Technology, Vol. 158, pp. 76-91, 2005.
17. A.A. Boateng, “Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder,” International Journal of Multiphase flow, Vol. 24, pp. 499-521, 1998.
18. A.V. Orpe and D.V. Khakhar, “Scaling relations for granular flow in quasi-two-dimensional rotating cylinders,” Physical Review E, Vol. 64, pp. 1-13, 2001.
19. N. Jain, J.M. Ottino, and R.M. Lueptow, “An experimental study of the flowing granular layer in a rotating tumbler,” Physics of Fluids, Vol. 14, pp. 572-582, 2002.
20. T.S. Komatsu, S. Inagaki, N. Nakagawa, and S. Nasuno, “Creep motion in a granular pile exhibiting steady surface flow,” Physical Review Letters, Vol. 86, pp. 1757-1760, 2001.
21. J.J. McCarthy, T. Shinbrot, G. Metcalfe, J.E. Wolf, and J.M. Ottino, “Mixing of granular materials in slowly rotated containers,” AIChE Journal, Vol. 42, No. 12, pp. 3351-3363, 1996.
22. B.A. Socie, P. Umbanhowar, R.M. Lueptow, N. Jain, and J.M. Ottino, “Creeping motion in granular flow,” Physical Review E, Vol. 71, 031304, 2005.
23. T. Arndt, A. Brucks, J.M. Ottino, and R.M. Lueptow, “Creeping granular motion under variable gravity levels,” Physical Review E, Vol. 74, 2006.
24. S.J. Fiedor and J. M. Ottino, “Dynamic of axial segregation and coarsening of dry granular materials and slurries in circular and square tubes,” Physical Review Letters, Vol. 91, pp. 244301, 2003.
25. N. Jain, J.M. Ottino, and R.M. Lueptow, “Effect of interstitial fluid on a granular flowing layer,” Journal of Fluid Mechanics., Vol. 508, pp. 23-44, 2004.
26. T. Finger and R. Stannarius, “Influences of the interstitial liquid on segregation patterns of granular slurries in a rotating drum,” Physical Review E, Vol. 75, pp. 031308, 2007.
27. N. Jain, J.M. Ottino, and R.M. Lueptow, “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granular Matter, Vol.7, pp. 69-81, 2005.
28. A.A. Boateng and P.V. Barr, “Granular flow behaviour in the transverse plane of a partially filled rotating cylinder,” Journal of Fluid Mechanics, Vol. 330, pp. 233-249, 1997.
29. J.R. Ferron and D.K. Singh, “Rotary Kiln Transport Processes,” AIChE Journal, Vol. 37, pp. 747-758, 1991.
30. D.R. Van Puyvelde, B.R. Young, M.A. Wilson, and S.J. Schmidt, “Experimental determination of transverse mixing kinetics in a rolling drum by image analysis,” Powder Technology, Vol. 106, pp. 183-191, 1999.
31. G.J. Finnie, N.P. Kruyt, M. Ye, C. Zeilstra and, J.A.M. Kuipers, “Longitudinal and transverse mixing in rotary kilns: a discrete element method approach,” Chemical Engineering Science, Vol. 60, pp. 4083-4091, 2005.
32. H. Leslie, E.D. William, and S. S. Leonard, “Experimental study of bedrock erosion by granular flows,” Journal of Geophysical Research, Vol. 113, pp. F02001, 2008.
33. C. Jean-Francois and R. Patrick, “Characteristic lengths in granular piles exhibiting steady surface flows,” Geomechanics from Micro to Macro. pp. 141- 146, 2015.
34. S.C. du Pont, P. Gondret, B. Perrin, and M. Rabaud, “Granular Avalanches in Fluids,” Physical Review Letters, Vol. 90, pp. 044301, 2003.
35. J. Crassous, J.F Metayer, P. Richard, and C. Laroche, “Experimental study of a creeping granular at very low velocity,” Statistical Mechanics: Theory and Experiment, pp. 03009, 2008.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2015-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明