參考文獻 |
[1] PCI Express® Base Specification, Revision 2.1, PCI-SIG, 2010.
[2] Serial ATA International Organization, Serial ATA Revision 3.0, SATA-IO, 2009.
[3] VESA DisplayPort Standard, Version 1, Revision 2, Jan. 2010.
[4] WAVECREST Corporation, “Understanding Jitter, ” 2001.
[5] Tektronix, “數位示波器的應用抖動(jitter)測量”.
[6] L. Luo, J. Wilson, S. Mick, J. Xu, L. Zhang, E. Erickson, and P. Franzon, “A 36 Gb/s ACCI mutli-channel bus using a fully differential pulse receiver,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2006, pp. 773–776.
[7] Maxim, “Choosing AC-Coupling Capacitors,” Application Note:HFAN-1.1, 2000.
[8] Agilent Technologies, “Finding sources of jitter with real-time jitter analysis,” 2008.
[9] STMicroelectronics, “Improving a Jitter Definition,” 2007.
[10] SHF Communication Technologies AG, “Application Note AN-JITTER-1-Jitter Analysis using SHF 10000 Series Bit Error Rate Testers,” 2005.
[11] Agilent Technologies, “Measuring Jitter in Digital Systems,” Application Note 1448-1.
[12] Altera Corporation, “Deterministic Jitter (DJ) Definition and Measurement,” 2009.
[13] Maxim, “Optical receiver performance evaluation”.
[14] Agilent, “Jitter Fundamentals : Jitter Tolerance Testing with Agilent 81250 ParBERT,” 2003.
[15] Texas Instruments, “Comparing Bus Solutions,” 2009.
[16] B. Razavi, Design of Integrated Circuit for Optical Communications. New York: McGraw-Hill, 2003.
[17] Maxim, “NRZ Bandwidth - HF Cutoff vs. SNR,” Application Note: HFAN-09.0.1.
[18] R. Inti, W. Yin, A. Elshazly, N. Sasidar, and P. K. Hanumolu “A 0.5-to-2.5 Gb/s reference-less half-rate digital CDR with unlimited frequency acquisition range and improved input duty-cycle error tolerance,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3150–3162, Dec. 2011.
[19] S.J. Song, S.M. Park, and H.j. Yoo, “A 4-Gb/s clock and data recovery circuit using four-phase 1/8-rate clock,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1213–1219, Jul. 2003.
[20] 劉深淵, 楊清淵, 鎖相迴路, 滄海書局, 2006.
[21] W.Y Lee, K.D. Hwang, and L.S. Kim, “A 5.4/2.7/1.62-Gb/s receiver for DisplayPort version 1.2 with multi-rate operation scheme,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 12, pp. 2858–2866, Nov. 2012.
[22] W.Y. Lee and L.S. Kim, “A 5.4-Gb/s clock and data recovery circuit using seamless loop transition scheme with minimal phase noise degradation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2518–2528, Nov. 2012.
[23] D. Dalton, K. Chai, E. Evans, M. Ferriss, D. Hitchcox, P. Murray, S. Selvanayagam, P. Shepherd, and L. DeVito, “12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2713–2725, Dec. 2005.
[24] X. Maillard, F. Devisch, and M. Kuijk, “A 900-Mb/s CMOS data recovery DLL using half-frequency clock,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 711–715, Jun. 2002.
[25] J. Kim and D.K. Jeong, “Multi-gigabit-rate clock and data recovery based on blind oversampling,” IEEE Commun. Mag., vol. 41, pp. 68–74, Dec. 2003.
[26] M. Nogawa, K. Nishimura, S. Kimura, T. Yoshida, T. Kawamura, M. Togashi, K. Kumozaki, and Y. Ohtomo, “A 10Gb/s burst-mode CDR IC in 0.13um CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2005, pp. 228–229.
[27] M. Brownlee, P. K. Hanumolu, and U. K. Moon, “A 3.2 Gb/s oversampling CDR with improved jitter tolerance,” in Proc. IEEE Custom Integrated Circuits Conf., 2007, pp. 353–356.
[28] J. D. H. Alexander, “Clock recovery from random binary data,” IET Electronics Letters, vol. 11, pp. 541–542, Oct. 1975.
[29] H. J. Jeon, R. Kulkarni, and Y. C. Lo, “A bang-bang clock and data recovery using mixed mode adaptive loop gain strategy,” IEEE J. Solid-State Circuits, vol. 48, no. 6, pp. 1398–1415, Jun. 2013.
[30] J. Lee, K. S. Kundert, and B. Razavi, “Analysis and modeling of bang-bang clock and data recovery circuits,” IEEE J. Solid-State Circuits, Express Briefs, vol. 39, no. 9, pp. 1571–1580, Sep. 2004.
[31] P. Heydari, “Analysis of the PLL jitter due to power/ground and substrate noise,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 12, pp.2404- 2416, Dec. 2004.
[32] S. M. Paletmo and J. P. de Gyve, “A multi-band single-loop PLL frequency synthesizer with dynamically-controlled switched tuning VCO,” IEEE Midwest Symposium on Circuits and Systems, pp. 818-821, 2000.
[33] L. Sun and D. Nelson, ” A 1.0 V GHz range 0.13um CMOS frequency synthesizer,” in Proc. IEEE Custom Integrated Circuits Conf., 2001, pp. 327–330.
[34] W. B. Wilson, U. K. Moon, K. R. Lakshmikumar, and L. Dai, “A CMOS self-calibrating frequency synthesizer,” IEEE J. Solid-State Circuits, pp. 1437–1444, 2000.
[35] J. Nakanishi, H. Notani, H. Makino, and H. Shinohara, “A wide lock-in range PLL using self-calibrating technique for processors,” in Proc. IEEE ASSCC, 2005, pp. 285–288.
[36] T.W. Ahn, C.G. Yoon, and Y. Moon, “An adaptive frequency calibration technique for fast locking wideband frequency synthesizers,” IEEE Midwest Symposium on Circuits and Systems, pp. 1899–1902, 2005.
[37] K. S. Lee, E. Y. Sung, I. C. Hwang, and B. H. Park, “Fast AFC technique using a code estimation and binary search algorithm for wideband frequency synthesis,” in Proc. IEEE European Solid-State Circuits Conference, 2005, pp. 181–184.
[38] S. Ali and M. Margala, “A 2.4-GHz auto-calibration frequency synthesizer with on-chip built-in-self-test solution,” IEEE International Symposium on Circuits and Systems, 2006, pp. 4651–4654.
[39] S. Ali, G. Briggs, and M. Margala, “A high frequency, low jitter auto-calibration phase-locked loop with built-in-self-test,” IEEE International Symposium on Defect and Fault Tolerance, 2009, pp. 591–599.
[40] H. Song, D. S. Kim, D. H. Oh, S. Kim, and D. K. Jeong, “A1.0–4.0-Gb/s all-digital CDR with 1.0-ps period resolution DCO and adaptive proportional gain control,” IEEE J. Solid-State Circuits, vol. 46, pp. 424–434, Feb. 2011.
[41] J. Song, I. Jung, M. Song, Y. H. Kwak, S. Hwang, and C. Kim, “A 1.62 Gb/s–2.7 Gb/s referenceless transceiver for DisplayPort v1.1a with weighted phase and frequency detection,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 2, pp. 268–278, Feb. 2013.
[42] 姜柏阡, “基於無限相位補償技術延遲鎖相迴路之6 Gbps時脈與資料回復電路,” 碩士論文, 國立中央大學, 2012.
[43] 呂耕維, “應用於雙速率串列傳輸系統之時脈與資料回復電路,” 碩士論文, 國立中央大學, 2013.
|