博碩士論文 102323016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.188.98.187
姓名 陳宗志(Tsung-chih Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 反應爐壓力槽管嘴在暫態負荷下之熱應力與疲勞行為研究
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 核能電廠中的核能一級組件在運轉期間,會受到來自壓力及溫度等各項循環暫態負載,且循環負載的大小及發生次數會影響組件的疲勞使用壽命,組件的疲勞使用壽命一直是設計者關注的議題。雖然在設計組件時已考慮到疲勞使用壽命,但安裝完成且開始運轉後,實際上所受到的循環負荷大小和設計值並不相同。
本研究以核電廠的反應爐水淨化取水管線(Reactor Water Clean Up Outlet Nozzle, RWCU)作為分析對象,考慮不同設計負荷條件組合,採用有限元素分析軟體(ANSYS)進行分析,搭配ASME NB-3200的規範求取組件易損耗處的應力值,並計算出累積使用因子,結果顯示這些易損耗處在此設計負荷下之累積使用因子小於1,皆屬於安全範圍之內。
除此之外,本研究亦探討格林函數在計算熱應力之實用性,結果顯示當結構材料特性為定值時,格林函數計算出的熱應力歷程與FEM的結果相當吻合。
摘要(英) The class 1 nuclear components are subjected to transient load like pressure and temperature during operation. The cycle number and magnitude of service load may affect the fatigue life of components and that is an important issue to engineering applications. Although the fatigue life of nuclear components had been evaluated in the design stage, the actual transient loads that components subjected to are not the same as the design transient loads.
In this study, the Reactor Water Clean Up (RWCU) outlet nozzle of reactor pressure vessel is evaluated. The critical stress value of this component is calculated under combination of different design load conditions by finite element method. Then according to ASME NB-3200 specification, the cumulative usage factor is calculated. The result shows that the maximum cumulative usage factor of the evaluated critical locations are much less than permissible value, 1. In addition, this study also investigates the practicality of Green’s function in thermal stress calculation. The result shows that when material properties are constant, the thermal stress history is in good agreement with that of the finite element method.
關鍵字(中) ★ 暫態負載
★ 累計使用因子
★ 格林函數
★ 熱應力
關鍵字(英) ★ Transient Loads
★ Cumulative Usage Factor
★ Green Function
★ Thermal Stress
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 x
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
1-3文獻回顧 3
1-3-1有限元素 3
1-3-2 疲勞分析 3
1-3-3 格林函數 4
第二章 理論說明 5
2-1 ASME Boiler and Pressure Vessel Code 5
2-2有限元素理論 5
2-3格林函數[15, 17, 18] 7
2-4疲勞分析理論 11
2-4-1疲勞壽命估算法 11
2-4-2應力-壽命曲線(S-N Curve)[19, 20] 12
2-4-3循環計數 13
2-4-4疲勞累積損傷理論 15
2-4-5破壞理論 16
2-5 ASME壓力容器應力與疲勞分析 17
2-5-1應力簡述 17
2-5-2疲勞分析 20
2-5-3配對法 21
第三章 研究方法 23
3-1 ANSYS設定 23
3-1-1前處理器(Pre-processor) 23
3-1-2分析計算(Solution)模組 30
3-2格林函數 46
第四章 結果與討論 50
4-1組件應力與疲勞行為 50
4-1-1 Level A & B運轉模式下之應力 50
4-1-2累積疲勞因子 54
4-2格林函數 59
4-2-1格林函數曲線求取 59
第五章 結論與未來研究方向 64
5-1結論 64
5-2未來研究方向 65
參考文獻 66
參考文獻 參考文獻
[1] “Quality Group Classifications and Standards for Water Steam and Radioactive Waste Containing Components of Nuclear Power Plants”, Regulatory Guide 1.26, United States Nuclear Regulatory Commission, Washington, DC, Revision 4, March 2007.
[2] S. R. Hill, Supporting New Build and Nuclear Manufacturing in South Africa: Section Ⅲ- Component Design and Construction, Westinghouse Electric Company, Sandton, South Africa, 2008.
[3] H. O. Fuchs, “Metal Fatigue in Engineering,’’ John-Wiley & Sons Inc. 1980.
[4] 王勗成、邵敏,有限元素基本原理與數值方法,亞東書局,1990。
[5] A. Hrennikoff, “Solution of Problems in Elasticity by the Frame Work Method,” Journal of Applied Mechanics, Vol. 8, No. 4, 1941.
[6] D. Mchenry, “A Lattice Analogy for the Solution of Stress Problems,” Journal of the Institution of Civil Engineers, pp. 59-82, 1943.
[7] L. E. Grinter, “Statistical State of Stress Studied by Grid Analysis, Numerical Methods of Analysis,” Numerical Methods of Analysis in Engineering, New York, MacMilian, 1949.
[8] J. H. Argyris, “The Matrix Theory of Statics,” Ingenieur-Archiv, Vol. 25, pp. 174, 1957.
[9] J. H. Argyris, “Energy Theorems and Structural Analysis,” Aircraft Engineer, pp. 26-27, 1955.
[10] E. L. Wilson, “Structural Analysis of Axisymmetric Solids,” American Institute of Aeronautics and Astronautics Journal, Vol. 3, No. 12, pp. 2269-2274, 1965.

[11] R. L. Jones, “Proceedings of the Second International Atomic Energy Agency Specialist,” Meeting on Subcritical Crack Growth, NUREG/CP-0067, Vol. 1, pp. 1-8, 1985.
[12] R. Cicero, S. Cicero, I. Gorrochategui, R. Lacalle, “Considerations on fatigue Stress Range Calculations in Nuclear Power Plants Using On-line Monitoring Systems and the ASME Code, ” Nuclear Engineering and Design, 240:47-56, 2010.
[13] R. Kumar, “Fatigue Life Estimation for Internal Threads in Class 1 Components,” Nuclear Engineering and Design, 197: 205-211, 2000.
[14] H. Zhang, C. Nie, Y. Xiong, D. Xie, and Y. Yu, “Approximate Analytical Models of Temperature and Thermal Stresses for 2D Axis-symmetry Object with Temperature-dependent Properties,” International Journal of Thermal Sciences, Vol. 53, pp. 100-107, 2012.
[15] 章貴和、段遠剛、徐曉、陳蓉,格林函數法在快速計算熱應力中的應用研究,核動力工程,第34卷,第5期,2013。
[16] 陳昭昌編譯,有限元素法-工程上之應用,復文書局,台南市。
[17] “FATIGUEPROTM On-line Fatigue Monitoring System: Demonstration at the Quad Cities BWR,” Electric Power Research Institute, Report No: 2688-3, January, 1989.
[18] H. O. Ko, M. J. Jhung, and J. B. Choi, “Development of Green’s Function Approach Considering Temperature-Dependent Material Properties and Its Application,” Nuclear Engineering and Technology, Vol. 46, No. 1, February, 2014.
[19] J. A. Bannantine, J. J. Comer, J. L. Handrock, “Fundamentals of Metal Fatigue Analysis,” pp. 1-123, 1990.
[20] E. Zahavi, “Fatigue Design,” pp. 41-181, 1996.
[21] J. E. Shigley, C. R. Mischke 原著,林震、吳嘉祥、黎文龍編譯,機械工程設計(上),台灣東華書局股份有限公司,第456-564頁,台北市,2002。
[22] M. Matsuishi, T. Endo, “Fatigue of Metals Subjected to Varying Stress,” paper presented to Japan Society of Mechanical Engineers, Fukuoka, Japan, March 1968.
[23] J. A. Bannantine, J. J. Comer, J. L. Hardrock, Fundamentals of Metal Fatigue Analysis, Prentice Hall, 1990.
[24] A. Palmgren, “Durability of Ball Bearings,” Zeitschrift des Vereines Deutscher Ingenieure (VDI- Zeitschrift), Vol. 68, No. 14, pp. 339-341, 1924.
[25] M. A. Miner, “Cumulative Damage in Fatigue,” Journal of Applied Mechanics, Vol. 12, Transactions of ASME, Vol. 67, A159-A164, 1945,
[26] W. D. Callister, Jr. 原著,陳文照、曾春風、游信和譯,材料科學與工程導論,高立圖書,2009。
[27] “Rule for Construction of Nuclear Facility Components,” ASME Boiler and Pressure Vessel Code, Section III, Division 1–Subsection NB Class 1 Component, American Society of Mechanical Engineers, New York, USA, 2010
[28] General Electric Company, RS-G238, “Detail Analysis for SD & RWCU Nozzle” June, 21, 1999.
[29] HITACHI, Taiwan Power Company Nuclear Generating Plant Unit 1: Guidance for Stress Analysis Procedure, RS-G237 (L1) Rev. 1, June 1998.
[30] “Rule for Construction of Nuclear Facility Components,” ASME Boiler and Pressure Vessel Code, Section III, Division 1 – Appendices, American Society of Mechanical Engineers, New York, USA, 2010.
指導教授 黃俊仁 審核日期 2015-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明