博碩士論文 985201025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.22.241.15
姓名 黃彥桓(Yen-huan Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 通訊系統之內插技術研究
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 通訊系統中,同步資訊傳輸最基本部分之一就是時序恢復。一般來說,接收端是使用固定的取樣頻率,但是由傳送端和接收端的資料取樣時間是不一樣的,這樣會導致非同步的情形發生。所以,在取樣後就必須做內插技術的補償。而內插技術通常是使用多項式去逼近脈衝函數。

本論文著重在以菲諾架構(Farrow Structure)實現多項式內插法,有升餘弦函數(Raised Cosine Function)、Spline function、Lagrange function、拋物線函數(Parabolic Function)、B-spline function,並分析比較各種多項式函數在同一電路架構上的性能。
摘要(英) In communication systems, symbol timing recovery is one of the most basic functions. In general, the sampling frequencies of the transmitter and receiver are not the same, this will lead to non-synchronization. Therefore, it is necessary to use interpolation techniques that uses polynomials to approximate the impulse function of ideal low pass filter if the sampling frequency of the receiver is fixed.

The thesis focuses on the farrow structure achieving polynomials including raised cosine function, spline function, lagrange function, parabolic function, b-spline function. Finally, we analyze and compare the performances of various polynomials in the same structure.
關鍵字(中) ★ 內插法
★ 插植器
★ 多項式濾波器
關鍵字(英) ★ Interpolation technique
★ Interpolator
★ Polynomial filter
論文目次 摘要……………………………………………………………………………………i
Abstract…………………………………………………………………………….ii
目錄…………………………………………………………………………………iii
圖目錄…………………………………………………………………………………v
表目錄………………………………………………………………………………vii
第一章 緒論………………………………………………………………………1
1.1 研究動機………………………………………………………………….1
1.2 研究目的………………………………………………………………….4
1.3 論文架構………………………………………………………………….6
第二章 通訊系統簡介……………………………………………………………7
2.1 通訊系統概略…………………………………………………………….7
2.2 同步考量…………………………………………………………………11
2.2.1 符碼同步……………………………………………………………11
2.2.2 載波頻率同步………………………………………………………12
2.2.3 時序同步……………………………………………………………12
第三章 內插法………………………………………………………………….14
3.1 數學模型…………………………………………………………………14
3.2 多項式濾波器……………………………………………………………17
3.2.1 Lagrange interpolation……………………………………………18
3.2.2 Raised cosine function…………………………………………….24
3.2.3 Spline function…………………………………………………….36
3.2.4 Parabolic function…………………………………………………38
3.2.5 B-spline function………………………………………………….39
第四章 模擬結果……………………………………………………………….42
4.1 實驗方法…………………………………………………………………42
4.2 實驗結果…………………………………………………………………43
4.2.1 Raised cosine function…………………………………………….43
4.2.2 Spline function…………………………………………………….49
4.2.3 Lagrange interpolation……………………………………………50
4.2.4 Parabolic function…………………………………………………51
4.2.5 B-spline function………………………………………………….51
4.3 實驗結果分析……………………………………………………………52
第五章 結論及未來展望……………………………………………………….59
參考文獻…………………………………………………………………………….60
參考文獻 [1] T. Pollet and M. Peeters, “Synchronization with DMT Modulation,” IEEE Communication Magazine, pp. 80-86, Apr. 1999.
[2] F.M. Gardner, “Interpolation in Digital Modems -- Part I: Fundamentals,” IEEE Trans. on Communications, pp. 501-507, Mar. 1993.
[3] V. Tuukkanen, J. Vesma, and M. Renfors, “Combined Interpolation and Maximum Likelihood Symbol Timing Recovery in Digital Receivers,” Proceedings of IEEE International Conference on Universal Personal Communication, pp. 698-702, Oct. 1997.
[4] J. Vesma, M. Renfors, and J. Rinne, “Comparison of Efficient Interpolation Techniques for Symbol Timing Recovery,” Proceedings of IEEE Globecom 96, London, UK, pp. 953-957, Nov. 1996.
[5] A.S.H. Ghadam and M. Renfors, “Farrow Structure Interpolators Based on Even Order Shaped Lagrange Polynomial,” Proceedings of International Symp. on Image and Signal Processing and Analysis, pp. 745-748, Sep. 2003
[6] Telecommunication Breakdown Concepts of Communication Transmitted via Software-Defined Radio, C. Richard Johnson Jr., Pearson Prentice Hall
[7] L. Eruo, F.M. Gardner, and R.A. Harris, “Interpolation in Digital Modems -- Part II: Implementation and Performance,” IEEE Trans. on Communications, pp. 998-1008, June 1993.
[8] R. W. Schafer and L. R. Rabiner, “A Digital Signal Processing Approach to Interpolation,” Proc. IEEE, vol. 61, pp. 692-702, June 1973.
[9] H. F. Tsai and Z. H. Jiang, “Raised Cosine Interpolator Filter for Digital Magnetic Recording Channel,” EURASIP Journal on Advances in Signal Processing, DOI: 10.1155/2011/651960, pp. 1-8, Apr. 2011.
[10] Hui-Feng Tsai, Zang-Hao Jiang, and Yinyi Lin, “Use of Raised Cosine Interpolator Filter for Timing Recovery,” Journal of the Chinese Institute of Engineers, vol. 34, no. 5, pp. 1-9, July 2011.
[11] F.B. Hildebrand, Introduction to Numerical Analysis. New York: McGraw-Hill, 1956
[12] T. Lyche, L.L. Schumaker, "On the convergence of cubic interpolating splines" A. Meir (ed.) A. Sharma (ed.), Spline Functions and Approximation Theory , Birkhäuser, pp. 169–189,1973
[13] C. de Boor, “A practical guide to splines”, Revised version, Springer, 2001
[14] Tian-Bo Deng, “Coefficient symmetry and efficient implementation of Lagrange-type variable fractional-delay filters,” in Proc. IEEE Fifth International Conference on Information, Communications and Signal Processing, Bangkok, Thailand, Dec. 6-9, 2005, pp. 77-80.
[15] Tian-Bo Deng, “Coefficient-Symmetries for Implementing Arbitrary-Order Lagrange-Type Variable Fractional-Delay Digital Filters” IEEE Trans. on Signal Processing, pp. 4078-4090, August 2007.
[16] Olli Niemitalo, “Polynomial Interpolators for High-Quality Resampling of Oversampled Audio,” Aug. 2001.
指導教授 薛木添 審核日期 2015-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明