博碩士論文 102521117 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.144.15.87
姓名 周聖凱(Shen-kai Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 載子在伸張應變型鍺量子點陣列中直接能隙轉換之研究
(Study of Direct-bandgap transition from tensile strained Ge quantum-dots array)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 量子點的電子能階★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性
★ 自對準矽奈米線金氧半場效電晶體之研製★ 鍺浮點記憶體之研製
★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析★ 應用於數位電視頻帶之平衡不平衡轉換器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用感應耦合SF6/C4F8電漿蝕刻定義矽鍺串珠柱狀陣列之後,再佐以選擇性高溫氧化將矽鍺串珠柱狀陣列轉換成鍺奈米晶粒簇團/二氧化矽柱狀陣列。利用氮化矽間壁層得以促進鍺奈米晶粒簇團有效聚集的特性,在900℃ 高溫熱回火環境下,進一步將鍺奈米晶粒簇團聚集成鍺量子點。在此高溫氧化過程中,鍺會不斷與二氧化矽鍵結並因氧化層的體積膨脹而向外拉扯,導致最後形成的鍺量子點會感受到伸張式的應力。根據拉曼光譜分析其伸張應力約為 0.4~1.6%,有助於鍺量子點內的載子得以經由直接能隙複合發光。因此,本文開發製備出鍺量子點碟型共振腔結構,以增強鍺量子點發光的強度並探討其光學特性。

透過光激發螢光譜線可得知受到伸張應力影響的鍺量子點之光激發峰值約在 0.83 eV,趨近於鍺材料中導電帶的Γ valleys 到價電帶的能量差,證明其確實具有直接能隙傳輸複合的可能性。另外根據強度相依的光激發螢光量測譜線可得到α 趨近於1,表示光訊號是來自於導/價電帶中激子複合而成,而透過溫度相依光激發螢光譜線量測可得知鍺量子點的活化能約為 10~17 meV,此外亦透過時間解析光激發螢光量測鍺量子點的載子複合時間約為 4.7 ns。本文呈現利用伸張應力改變鍺量子點的能隙,其峰值 0.83 eV對應其發光波長約為 1500 nm 可有效應用於現今近紅外光通訊波段。經由掃描式電容-電壓特性曲線,亦可以觀察到在980 nm的光照射下,有明顯的滯留迴路特性,再次驗證伸張式形變之鍺量子點陣列具有直接能隙吸光之能力。



摘要(英) In this thesis, we formed abacus-bead SiGe pillar array by using SF6/C4F8 Inductively Coupled Plasma etching, and followed by selectivity oxidation transforming the abacus-bead SiGe pillar array into Ge nanocrystallites/SiO2 ¬pillar array. With the help of Si3N4 sidewall layer on movement and segregation of Ge nanocrystallites, germanium quantum dots (Ge QDs) were fabricated at 900℃ thermal annealing.

During high-temperature oxidation, germanium would bond with as-formed SiO2 continuously and then be pulled outwards because of volume expanding of SiO2, leading to the tensile strain state in Ge QDs. Raman Spectroscopy measurement confirmed that the tensile strain in Ge QDs was about 0.4~1.6%, leading to a quasi-direct bandgap transition properties of Ge QDs. Therefore, we developed a Microdisk cavity for fabricated Ge QDs to enhance Ge-QD luminousness and explored its optical properties.

The corresponding photoluminescence (PL) peak of Ge-QD Microdisk centered

at 0.83eV, which corresponded to the energy difference from Γ valleys to valance band in germanium, demonstrating the probability of direct-transition recombination for Ge QDs. Besides, a fitted α approaching to 1 in the power-dependent PL spectra suggested that PL emission was being dominated by exciton recombination in the Ge QDs and furthermore, the activation energy (Ea) extracted from temperature- dependent PL was about 10~17 meV. Time-resolved photoluminescence show the carrier lifetime of ~ 4.7 ns. This study demonstrated the modification of Ge QDs bandgap by tensile strain, and its peak energy located at 0.83 eV, corresponding to wavelength 1500 nm, showed the promising potential for applications in near infra-red (NIR) communication. In capacitance-voltage (C-V) characterization, significant hysteresis curve under a 980 nm laser illumination double confirmed that tensile strained Ge QDs with quasi direct-bandgap possess the ability of light absorption.





關鍵字(中) ★ 鍺量子點
★ 直接能隙傳輸
關鍵字(英) ★ Ge quantum dot
★ Direct-bandgap transist
論文目次 中文摘要.....................................................................................................................................I

英文摘要...................................................................................................................................Ⅲ

致 謝.......................................................................................................................................Ⅴ

目 錄......................................................................................................................................VI

圖目錄....................................................................................................................................VIII

表目錄.....................................................................................................................................XII

第一章 簡介與研究動機.........................................................................................................1

1-1 光通訊的發展.............................................................................................................1

1-2 改善鍺材料發光之方法.............................................................................................2

1-3 碟型共振腔.................................................................................................................3

1-4 研究動機.....................................................................................................................4

1-5 論文的整體架構.........................................................................................................4

第二章 鍺量子點的形成原理與關鍵製程開發.....................................................................9

2-1 前言.............................................................................................................................9

2-2 鍺量子點於二氧化矽/氮化矽自聚............................................................................9

2-2-1 鍺奈米鍺晶粒團簇形成於二氧化矽內部....................................................9

2-2-2 鍺球形量子點形成於氮化矽層上..............................................................10

2-2-3 鍺球形量子點形成於覆蓋氮化矽的二氧化矽中......................................10

2-3 鍺球形量子點於二氧化矽中的伸張應變來源.......................................................11

2-4 串珠矽鍺蝕刻原理...................................................................................................12

2-4-1 串珠矽鍺柱蝕刻開發..................................................................................13

2-5 串珠矽鍺柱與沉積氮化矽熱回火形成串珠狀量子點...........................................15

2-6 載子倍增現象...........................................................................................................16

2-7 結論...........................................................................................................................17

第三章 鍺量子點碟型共振腔與偵測器製作.......................................................................26

3-1 前言...........................................................................................................................26

3-2 鍺量子點碟型共振腔製作.......................................................................................26

3-3 鍺量子點碟型共振腔光偵測器製作.......................................................................29

第四章 伸張應變式鍺量子點光學特性與電容量測結果...................................................41

4-1 前言...........................................................................................................................41

4-2 拉曼量測光譜...........................................................................................................41

4-2-1 拉曼光譜對應鍺量子點應力........................................................................41

4-3 光激發螢光光譜探討鍺量子點光學特性...............................................................43

4-3-1 光激發螢光光譜..........................................................................................44

4-3-2 變功率光激發螢光光譜..............................................................................44

4-3-3 變溫光激發螢光光譜..................................................................................45

4-4 時間解析光激發螢光光譜.......................................................................................47

4-5 鍺量子點碟型共振腔光偵測器電容特性...............................................................48

第五章 總結與未來展望.......................................................................................................59

參考文獻...................................................................................................................................60



參考文獻 [1] Jeong-Woo Park., Photodiodes - World Activities in 2011, InTech., 2011.

[2] FInstP, Cyril Hilsum Hon., “The GaAs scene in 1962: the battle with Si,”, Semiconductor Science and Technology, 28(1), p15028, 2013.

[3] Henry Kressel, “Semiconductor Lasers and Herterojunction LEDs,” p31, 1977.

[4] J. Liu , X. Sun , L. C. Kimerling and J. Michel, “Towards a Ge-based laser for CMOS applications,” Proc. 5th IEEE Int. Conf. Group IV Photon, p16, Sorrento, Italy, 2008.

[5] Carroll, L., Friedli, P., “Direct-gap gain and optical absorption in Germanium correlated to the density of photoexcited carriers, doping, and strain,” Phys. Rev. Lett., 109(5), p057402, 2012.

[6] J. Liu, L. C. Kimerling, J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration,” Semicond. Sci. Technol., 27(9), p094006, 2012.

[7] M Gomilšek, “Whispering gallery modes,” p3, 2011.

[8] Chen, K. H., Wang, C. C., George, T., & Li, P. W., “The pivotal role of SiO formation in the migration and Ostwald ripening of Ge quantum dots,” Phys. Rev. Lett., 105, p122102, 2014.

[9] Chen, K. H., Wang, C. C., George, T., & Li, P. W., “The role of Si interstitials in the migration andgrowth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale Research Letters, 9, p339, 2014.

[10] Cao, H., Xu, J. Y., Xiang, W. H., Ma, Y., Chang, S. H., Ho, S. T., & Solomon, G. S. , “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett., 76, p3519, 2000.

[11] Chien, C. Y., Chang, Y. J., Chen, K. H., Lai, W. T., George, T., Scherer, A., & Li, P. W., “Nanoscale, catalytically enhanced local oxidation of silicon-containing layers by ‘burrowing’ Ge quantum dots,” Nanotechnology, 22, p435602, 2011.

[12] Bernard, James E, Alex Zunger, “Strain energy and stability of Si-Ge compounds, alloys, and superlattices,” Physical Review B, 44(4), p663, 1991.

[13] Yuan, F., Jan, S. R., Maikap, S., Liu, Y. H., Liang, C. S., & Liu, C. W., “Mechanically strained Si-SiGe HBTs,” Electron Device Letters, IEEE, 25(7), p483, 2004.

[14] Semiconductor, Virginia, “General Properties of Si, Ge, SiGe, SiO2 and Si3N4,” p2, 2002.

[15] 王慶奇,“利用奈米圖案技術形成三維鍺量子點陣列的研製及其特性分析”,碩士論文,國立中央大學,民國100年。

[16] Saeed, S., de Weerd, C., Stallinga, P., Spoor, F. C., Houtepen, A. J., Siebbeles, L. D., & Gregorkiewicz, T., “Carrier multiplication in germanium nanocrystals,” Light: Science & Applications, 4(2), p251, 2015.

[17] Claudiu M. Cirloganu, Lazaro A. Padilha, Qianglu Lin, Nikolay

S. Makarov,Kirill A. Velizhanin, Hongmei Luo, Istvan Robel, Jeffrey M. Pietryga & Victor I. Klimov, “Enhanced carrier multiplication in engineered quasi-type-II quantum dots,” Nature communications, 5, 2014.

[18] Lin, J. H., Yang, H. B., Qin, J., Zhang, B., Fan, Y. L., Yang, X. J., & Jiang, Z. M., “Strain analysis of Ge/Si (001) islands after initial Si capping by Raman spectroscopy,” Journal of applied physics, 1018, p083528, 2007.

[19] Huo, Y., Lin, H., Rong, Y., Makarova, M., Kamins, T. I., Vuckovic, J., & Harris, J. S., “Direct band gap tensile-strained Germanium,” Conference on Lasers and Electro-Optics., Optical Society of America, 2009.

[20] T.-H. Cheng, K.-L. Peng, C.-Y. Ko, C.-Y. Chen, H.-S. Lan, Y.-R. Wu, C. W. Liu and H.-H. Tseng., “Strain-enhanced photoluminescence from Ge direct transition,” Applied Physics Letters, 96(21), p211108, 2010.

[21] Lee, S. W., Kim, T. G., Hirakawa, K., Kim, J. S., Choi, S. H., & Cho, H. Y.,

“Lateral photoconductivity and bound states of self-assembled Ge/Si quantum

dots,” Nanotechnology, 18(10), p105403, 2007.

[22] Lu, Qi, Qiandong Zhuang, and Anthony Krier., “Gain and Threshold Current in Type II In (As) Sb Mid-Infrared Quantum Dot Lasers,” Photonics, 2(2), p414, 2015.

[23] 陳弘斌, “鍺/矽/鍺多層量子點結構之光學特性研究”,碩士論文,國立中央大學,民國100年。

[24] Baier, T et al., “Type-II band alignment in Si/Si 1− x Ge x quantum wells from photoluminescence line shifts due to optically induced band-bending effects: experiment and theory,” Physical Review B, 50(20), p15191, 1994.

[25] Schaevitz, R. K., Ly-Gagnon, D. S., Roth, J. E., Edwards, E. H., & Miller, D. A. B., “Indirect absorption in germanium quantum wells,” AIP Advances, 1(3), p032164, 2011.

[26] Ryu, M. Y., Harris, T. R., Yeo, Y. K., Beeler, R. T., & Kouvetakis, J., “Temperature-dependent photoluminescence of Ge/Si and Ge1-ySny/Si, indicating possible indirect-to-direct bandgap transition at lower Sn content,” Applied Physics Letters, 102(17), p171908, 2013.

[27] Varshni, Y. P., “Temperature dependence of the energy gap in semiconductors,” Physica, 34(1), p149, 1967.

[28] Chien, C. Y., Chang, Y. J., Chang, J. E., Lee, M. S., Chen, W. Y., Hsu, T. M., & Li, P. W., “Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics,” Nanotechnology, 21(50), p505201, 2010.

[29] Kuo, M. H., Lai, W. T., Hsu, T. M., Chen, Y. C., Chang, C. W., Chang, W. H., & Li, P. W., “Designer germanium quantum dot phototransistor for near infrared optical detection and amplification,” Nanotechnology, 26(5), p055203, 2015.

指導教授 李佩雯、郭明庭(Pei-wen Li Ming-ting Kuo) 審核日期 2015-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明