參考文獻 |
REFERENCE
[1] D. A. Johns and K. Martin, “ Analog Integrated Circuit Design, ” John Wiley & Sons, New York, 1997.
[2] Behzad Razavi, “Design of Analog CCMOS Integrated Circuit, ” McGraw-Hill, Boston, 2001.
[3] C. Sandner, M. Clara, A. Santner, T. Hartig, and F. Kuttner, “A 6-bit 1.2-GS/s low-power flash-ADC in 0.13-μm digital CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1499–1505, Jul. 2005.
[4] Kale, A.,V., Palsodkar, P., Dakhole, P.K., “Comparative Analysis of 6 Bit Thermometer-to-Binary Decoders for Flash Analog-to-Digital Converter,” IEEE International Conference on Communication Systems and Network Technologies (CSNT), pp. 543—546, 2012.
[5] Cho, S., H., Lee, C. K., Lee, S., G., Ryu, S., T. “ A Two-Channel Asynchronous SAR ADC With Metastable-Then-Set Algorithm. ” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 20 , Iss. 4, pp. 765—769, 2012.
[6] Signore, B., P., Kerth, D., A., Sooch, N., Swanson E.S. G. Mallat, “Amonolithic 20-b delta-sigma A/D converter,” IEEE J. Solid-State Circuits, vol. 25, pp. 1311-1317, 1990.
[7] K. Kusumoto, A. Matsuzawa, and K. Murata, “A 10-b 20-MHz 30-mW pipelined interpolating CMOS ADC,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1200–1206, Dec. 1993.
[8] B. Verbruggen, J. Craninckx, M. Kuijk, P. Wambacq, and G. V. der Plas, “A 2.6 mW 6 bit 2.2 GS/s fully dynamic pipeline ADC in 40-μnm Digital CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 2080–2090, Oct. 2010.
[9] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation, ” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 11, pp. 674-693, 1989.
[10] Jo Yew Tham, Lixin Shen, Seng Luan Lee, Hwee Huat Tan, “A general approach for analysis and application of discrete multi-wavelet transforms”, IEEE Transactions on Signal Processing, vol. 48, issue: 2, pp. 457-464, 2000.
[11] Vattikuti Naga Prudhvi Raj, Tad Venkateswarlu, “Denoising of Medical Images Using Undecimated Wavelet Transform”, IEEE International Conference on Recent Advances in Intelligent Computational Systems (RAICS), pp. 483 –-488, 2011.
[12] Md. Rezwanul Ahsan, Muhammad Ibn Ibrahimy, Othman Omran Khalifa, “VHDL Modelling of Fixed-point DWT for the Purpose of EMG Signal Denoising ”, IEEE Third International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN) , pp. 483 -488, 2011.
[13] Vattikuti Naga Prudhvi Raj, Tad Venkateswarlu, “ECG Signal Denoising Using Undecimated Wavelet Transform”, IEEE 3rd International Conference on Electronics Computer Technology (ICECT), pp. 94 -98 , 2011.
[14] Laurent Brechet, Marie-Françoise Lucas, Christian Doncarli, Dario Farina, “Compression of Biomedical Signals With Mother Wavelet Optimization and Best-Basis Wavelet Packet Selection”, IEEE Transactions on Biomedical Engineering , vol.54, pp. 2186 – 2192, 2007.
[15] Eric J. Balster, Benjamin T. Fortener, William F. Turri, “Integer Computation of Lossy JPEG2000 Compression”, IEEE Transactions on Image Processing, vol. 20, pp. 2386 - 2391, 2011.
[16] Mallat, “Multifrequency Channel Decompositions of Images and Wavelet Models,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, pp.2091-2110, 1989.
[17] Mohan Vishwanath, Robert Michael Owens, Mary Jane Irwin, “VLSI Architectures for the Discrete Wavelet Transform”, IEEE Transactions on Circuits and Systems, vol. 42, no. 5, pp. 305-316, 1995.
[18] Aleksander Grzeszczak, Mrinal K. Mandal, Sethuraman Panchanathan, Tet Yeap, “VLSI Implementation of Discrete Wavelet Transform”, IEEE Transactions on VLSI Systems, vol. 4, pp. 421-433, Dec. 1996.
[19] Keshab K. Parhi, Takao Nishitani, “VLSI Architectures for Discrete Wavelet Transforms”, IEEE Transactions on VLSI Systems, vol. 1, no. 2, pp. 191-202, 1993.
[20] Francescomaria Marino, David Guevorkian, Jaakko T. Astola, “Highly Efficient High- Speed/Low-Power Architectures for the 1-D Discrete Wavelet Transform”, IEEE Transactions on Circuits and Systems-Part II, vol. 47, no. 12, pp. 1492-1502, 2000.
[21] W. Sweldens, “The new philosophy in biorthogonal wavelet constructions,” Proc. SPIE, vol. 2569, pp. 68–79, 1995.
[22] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps”, Journal of Fourier Analysis and Applications, vol. 4, p247 – 269, 1998.
[23] Pei-Yin Chen, “VLSI implementation for one-dimensional multilevel lifting-based wavelet transform”, IEEE Transactions on Computers, vol. 53, no. 4, pp. 386-398, April, 2004.
[24] Kishore Andra, Chaitali Chakrabarti, Tinku Acharya, “A VLSI Architecture for Lifting-based Forward and Inverse Wavelet Transform”, IEEE Transactions on Signal Processing, vol. 50, no. 4, pp. 966-977, 2002
[25] Chao-Tsung Huang, Po-Chih Tseng, Liang-Gee Chen, “Efficient VLSI Architectures of Lifting-Based Discrete Wavelet Transform by Systematic Design Method”, Proceeding(s) of IEEE international Symposium on Circuits and System, vol. 5, pp.565-568, 2002.
[26] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Generic RAM-based architectures for two-dimensional discrete wavelet transform with line-based method,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 15, no. 7, pp. 910-919, July 2005.
[27] B.-F. Wu, and C.-F. Lin, “A high-performance and memory-efficient pipeline architecture for the 5/3 and 9/7 discrete wavelet transform of JPEG2000 codec,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 15, no. 12, pp. 1615-1628, December 2005. (Hsia 26)
[28] Y.-K Lai., L.-F. Lien, and Y.-C. Shih, “A high-performance and memory-efficient VLSI architecture with parallel scanning method for 2-D lifting-based discrete wavelet transform, ” Consumer Electronics, IEEE Transactions on, vol. 55, pp. 400-407, 2009.
[29] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture for lifting-based forward and inverse wavelet transform,” IEEE Trans. on Signal Processing, vol. 50, no. 4, pp. 966-977, April 2002.
[30] W. Jiang and A. Ortega, “Lifting factorization-based discrete wavelet transform architecture design, ” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 5, pp. 651–657, May 2001.
[31] H. Liao, M. K. Mandal, and B. F. Cockburn, “Efficient architectures for 1-D and 2-D lifting-based wavelet transforms,” IEEE Trans. on Signal Process., vol. 52, no. 5, pp. 1315–1326, May 2004.
[32] C.-Y. Xiong, J. Tian, and J. Liu, “Efficient high-speed/low-powerline-based architecture for two-dimensional discrete wavelet transform using lifting scheme,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 16, pp. 309-316, 2006
[33] P.-Y. Chen, “VLSI implementation of lifting discrete wavelet transform using the 5/3 filter”, IEICE Trans. on Information and Systems, vol. E85-D, no. 12, pp. 1893-1897, December 2002.
[34] C.-Y. Xiong, J. Tian, and J. Liu, “Efficient Architectures for Two-Dimensional Discrete Wavelet Transform Using Lifting Scheme, ” Image Processing, IEEE Transactions on, vol. 16, pp. 607-614, 2007.
[35] G.-C. Jung and S.-M. Park, “VLSI implement of lifting wavelet transform of JPEG2000 with efficient RPA (recursive pyramid algorithm) realization,” IEICE Trans. on Fundamentals, vol. E88-A, no. 12, pp. 3508-3515, December 2005.
[36] W. Zhang, Z. Jiang, Z. Gao, and Y. Liu, “An Efficient VLSI Architecture for Lifting-Based Discrete Wavelet Transform, ” Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 59, pp. 158-162, 2012.
[37] X. Tian, L. Wu, Y.-H. Tan, and J.-W. Tian, “fficient Multi-Input/Multi-Output VLSI Architecture for Two-Dimensional Lifting-Based Discrete Wavelet Transform”, Computers, IEEE Transactions on, vol. 60, pp. 1207-1211, 2011.
[38] Walter Aloisi and Rosario Mita, “Gated-Clock Design of Linear-Feedback Shift Registers, ” IEEE Transactions on Circuits and Systems II: Express Briefs, , vol. 55, pp. 546-550, 2008.
[39] R. S. Katti, X. Ruan, and H. Khattri, “Multiple-Output low-power linean feedback shift register design,” IEEE Transactions on Circuits and Systems I, Reg. Papers, vol. 53, no. 7, pp. 1487–1495, Jul. 2006.
[40] M. Lowy, “Parallel implementation of linear feedback shift register for low power applications,” IEEE Transactions on Circuits and Systems II, Analog Digit. Signal Process., vol. 43, no. 6, Jun. 1996.
[41] Roman Garnett, Timothy Huegerich, Charles Chui, and Wenjie He, “ A Universal Noise Removal Algorithm With an Impulse Detector ”, IEEE Transactions on Image Processing, Vol. 14, Issue 11, pp. 1747-1754, Nov. 2005.
|