博碩士論文 953403021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.17.28.48
姓名 陳裕德(Yu-Te Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱處理、銅/鎂比與合金元素(鈧、鋯、鑭與鈰)對於Al-4.6Cu-Mg-Ag合金微結構與機械性質之影響
(Effects of Heat Treatment, Cu/Mg Ratio and Alloying Elements (Scandium, Zirconium, Lanthanum and Cerium) on the Microstructures and Mechanical Properties of Al-4.6Cu-Mg-Ag alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Al-4.6Cu-Mg-Ag為一可熱處理型鋁合金,主要析出強化相為Ω與θ’相,Ω相由於在鋁的主要滑動面{111}α上析出且熱穩定佳,使合金具有極為優良的常溫與高溫(200℃以下)強度以及熱穩定性,廣泛運用於航太與軍事工業。合金中Mg、Ag原子聚集(Mg-Ag cluster)與差排,分別是Ω相與θ’相的析出成核點,此外合金之銅/鎂比影響析出相的種類(Ω、θ’與S’相)與分布情形,故於銅成分固定下之合金,鎂含量為影響Ω相析出的重要合金元素,而θ’相的析出行為則受加工與差排所影響。此外,合金固溶處理後基地內溶質原子固溶量,亦將造成Ω與θ’相析出特性之變化。
自然時效過程中產生Mg-Ag聚集,將有利於Ω相析出,而冷加工使材料內部產生大量差排,不僅增加θ’相析出成核點而促進θ’相析出外,又會阻擋原子擴散抑制Mg-Ag聚集,減少Ω相析出。為了進一步瞭解Mg-Ag聚集、差排及合金元素對Al-4.6Cu-Mg-Ag鋁合金強化相析出之影響,因此本論文首先將藉由T7與T8兩種熱處理,調整「自然時效時間」與「冷加工量」,探討熱處理與冷加工對於不同Cu/Mg比之Al-4.6Cu-Mg-0.5Ag合金微結構與機械性質之影響。再者,藉由微量合金元素鈧(Sc)、鋯(Zr)、鑭(La)與鈰(Ce)添加於Al-4.6Cu-0.3Mg-0.6Ag (A201)合金中,探討稀土、過渡元素對於合金微結構、晶粒尺寸、析出特性與機械性質之影響。文中完整說明製程、微結構與性質三者間之相對關係,以呈現此高強度鋁合金之特性。
本論文透過光學顯微鏡(Optical Microscopy)、電子微探儀(Electron Probe X-ray Microanalysis)、微差掃描熱分析(Differential Scanning Calorimetry)、導電度(Electrical Conductivity, %IACS)及穿透式電子顯微鏡(Transmission Electron Microscopy)等進行微結構觀察與分析,並搭配硬度與拉伸性質試驗以瞭解機械性質之變化,獲得以下結論:自然時效對於Al-4.6Cu-Mg-0.5Ag合金析出量與機械性質並無顯著影響,但可提升合金於人工時效初期之析出動力與強化速度。冷加工促進θ’相而抑制Ω相析出,於高Cu/Mg比之合金中或隨冷加工量增加上述現象更為明顯,使得合金總析出量及機械強度提升,但卻造成延性降低。添加微量合金元素後,因Al3Sc、Al3(ScxZr1-x)、W(Al8.5-4Cu6.6-4Sc)相、富鑭與富鈰相生成,雖有助於合金晶粒細化,但W相、富鑭與富鈰相等介金屬化合物無法藉由固溶處理回溶至基地中,減少基地內Cu、Mg等原子固溶量,造成Ω與θ’相析出量減少,並且延緩強化相之析出,不利於A201合金之機械強度。
摘要(英) The main precipitation strengthening phases of heat treatable Al-4.6Cu-Mg-Ag alloys are Ω and θ’. The thermal stable Ω phase precipitates on the {111}α planes, the primary slip planes of the aluminum alloy and possess excellent mechanical strength under 200℃. Al-4.6Cu-Mg-Ag alloys are widely applied for moderate-temperature and high-strength applications in the aviation and military industries because of their excellent strength and thermal stability. The Mg-Ag clusters and the dislocations are the nucleation sites of Ω and θ’. The Cu/Mg ratio affects the relative distribution of Ω, S’ and θ’ phases, and influences the thermal stability of Al-4.6Cu-Mg-Ag alloys. The concentration of magnesium is an important factor for precipitation of Ω phase. The cold working introduces numerous dislocations and increases the heterogeneous nucleating sites of θ’ phase. Moreover, the precipitation characteristics of Ω and θ’ phases are also affected by solid solubility of the alloying elements in the matrix.
The Mg-Ag clusters form during natural aging and encourage the precipitation of Ω phase. The cold work introduces lots of dislocations and benefits for the precipitation of θ’ phase, but depresses the formation of Mg-Ag clusters. In order to interpret how the Mg-Ag clusters, dislocations and alloying elements influence the strengthening phases of Al-4.6Cu-Mg-0.5Ag alloy, hence, present works attempt to examine the effects of heat treatment and cold working on the microstructures and mechanical properties of different Cu/Mg ratio alloys, and start with various natural aging period and cold working percentages, subsequently heat treated to T7 and T8. Further, the other purpose of this investigation is to examine the effects of rare earth (scandium, lanthanum, cerium) and transition elements (zirconium) on the microstructures, grain sizes, precipitation specifics and mechanical properties of Al-4.6Cu-
0.3Mg-0.6Ag (A201) after T7 heat treatment. To completely explain the relationship among the process, structure and property, then the features of this high strength aluminum alloy can been understood completely.
The relative microstructure variations were elucidated by the observations of optical microscope (OM), Electron probe X-ray microanalysis (EPMA), differential scanning calorimeter (DSC), electrical conductivity meter (%IACS), transmission electron microscopy (TEM). Mechanical properties were correlated with Rockwell hardness and tensile testing. The results showed that natural aging treatment has little noticeable benefit on the quantity of precipitation strengthening phases and mechanical properties, but it increases the precipitation strengthening rate at the initial stage of artificial aging. Cold working brings more lattice defects and suppresses the precipitation of Ω phase but encourages the θ’ phase. The above-mentioned precipitation phenomena are more obvious in high degrees of cold working and high Cu/Mg ratio alloy. More θ’ phases precipitate and increase the strength, but decrease the ductility. Adding the alloying elements of Sc, Zr, La and Ce to A201 alloys, the Al3Sc, Al3(ScxZr1-x), W(Al8.5-4Cu6.6-4Sc), La-rich and Ce-rich intermetallic compounds form, and the W, La-rich and Ce-rich phase can’t dissolve to matrix, reducing effective quantity of Cu and Mg atoms in α-matrix, disadvantaging the precipitation of Ω and θ’ phases. Although the grain refinement is obtained by the addition of alloying elements, the decrease of strengthening phases lowers the strength but promotes the ductility of A201 alloys.
關鍵字(中) ★ Al-4.6Cu-Mg-Ag合金
★ 銅/鎂比
★ 自然時效
★ 冷加工
★ 稀土元素
★ 過渡元素
★ 介金屬化合物
關鍵字(英) ★ Al-4.6Cu-Mg-Ag alloy
★ Cu/Mg ratio
★ natural aging
★ cold working
★ rare earth
★ transition element
★ intermetallic compounds
論文目次 摘要-------------------------------------------------------Ⅰ
Abstract--------------------------------------------------Ⅲ
誌謝-------------------------------------------------------Ⅵ
總目錄-----------------------------------------------------Ⅶ
List of Figures -----------------------------------------XⅠ
List of Tables -----------------------------------------XVⅠ
第一章、前言------------------------------------------------1
1.1鋁合金簡介-----------------------------------------------1
1.2 Al-Cu-Mg-Ag合金發展與性質--------------------------------7
1.3 Al-Cu-Mg-Ag合金之析出強化相------------------------------10
1.4 Cu/Mg比對Al-Cu-Mg-Ag合金析出強化相之影響------------------13
1.5 熱處理與加工對Al-4.6Cu-Mg-Ag合金析出相與
機械性質之影響-15
1.6 稀土元素對於鋁合金微結構及機械性質之影響---------------------20
1.6.1 稀土元素簡介------------------------------------------20
1.6.2稀土元素對鋁合金之影響-----------------------------------22
1.6.3 稀土元素對於Al-Cu合金之影響-----------------------------32
1.7 研究背景、動機與目的-------------------------------------36
1.7.1 研究背景與動機----------------------------------------36
1.7.2 研究目的---------------------------------------------38

第二章、實驗步驟與方法----------------------------------------39
2.1 合金準備與鑄造--------------------------------------40
2.1.1 不同Cu/Mg比( Mg含量)材料之準備-------------------------40
2.1.2 添加稀土元素(Sc、La與Ce)與過渡元素(Zr)材料之準備----------41
2.2 材料熱處理與編號------------------------------------42
2.3微結構觀察與分析------------------------------------------45
2.3.1 光學顯微鏡(Optical Microscopy, OM)-------------------45
2.3.2 電子微探儀(Electron Probe X-ray Microanalysis, EPMA)-----45
2.3.3 微差掃瞄熱分析儀(Differential Scanning Calorimetry, DSC)-46
2.3.4 導電度量測(Electrical Conductivity, %IACS)-----------47
2.3.5 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM)----47
2.3.6 穿透式電子顯微鏡(Transmission Electron Microscope, TEM)48
2.4 機械性質分析----------------------------------------49
2.4.1硬度試驗----------------------------------------------49
2.4.2拉伸試驗----------------------------------------------49

第三章、結果與討論-------------------------------------------50
3.1熱處理與Cu/Mg比對於Al-4.6Cu-Mg-0.5Ag合金
微結構及機械性質之影響--------51
3.1.1微結構分析--------------------------------------------51
3.1.1.1金相觀察--------------------------------------------51
3.1.1.2微差掃瞄熱分析(DSC)----------------------------------54
3.1.1.3導電度量測------------------------------------------58
3.1.1.4穿透式電子顯微鏡TEM分析------------------------------65
3.1.2機械性質分析------------------------------------------72
3.1.2.1硬度與拉伸試驗--------------------------------------72
3.1.2.2 破斷面SEM分析--------------------------------------75
3.1.3 結論------------------------------------------------79
3.2鈧(Sc)與鋯(Zr)對Al-4.6Cu-0.3Mg-0.6Ag合金微結構與
機械性質之影響--------81
3.2.1 微結構分析-------------------------------------------81
3.2.1.1金相觀察、能量散佈光譜儀(EDS)及
電子微探儀(EPMA)分析---------81
3.2.1.2 微差掃瞄熱分析(DSC)及
穿透式電子顯微鏡(TEM)之觀察分析----88
3.2.1.3導電度量測-----------------------------------------94
3.2.2 機械性質分析----------------------------------------96
3.2.2.1 硬度與拉伸試驗--------------------------------------97
3.2.2.2 破斷面SEM分析--------------------------------------99
3.2.3 結論-----------------------------------------------102
3.3鑭(La)與鈰(Ce)對Al-4.6Cu-0.3Mg-0.6Ag合金微結構與
機械性質之影響------103
3.3.1 微結構分析------------------------------------------103
3.3.1.1金相觀察及電子微探儀(EPMA)分析------------------------103
3.3.1.2 導電度量測----------------------------------------109
3.3.1.3微差掃瞄熱分析(DSC)---------------------------------112
3.3.2 機械性質分析-----------------------------------------113
3.3.2.1 硬度與拉伸試驗-------------------------------------113
3.3.2.2 破斷面SEM分析-------------------------------------115
3.3.3 結論-----------------------------------------------117

第四章、總結論---------------------------------------------118

第五章、未來研究方向----------------------------------------121
References-----------------------------------------------123
參考文獻 1. William D. Callister Jr. “Materials Science and Engineering an Introduction”, Wiley, 4th ed., pp. 363. (1996)
2. John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International, Metals Park, Ohio, pp. 351-359. (1984)
3. John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International, Metals Park, Ohio, pp. 320-350. (1984)
4. 劉國雄、葉均蔚, “高強力鋁合金之熱處理-析出硬化”,金屬熱處理, 14期, pp. 1-28. (1985)
5. D. Apelian, S. Shivkumar and G. Sigworth, “Fundamental aspects of heat treatment of cast Al-Si-Mg alloys”, American Foundry Society Trans., Vol. 89-137, pp. 727-743. (1989)
6. J. Gauthier, P. R. Louchez and F. H. Samuel, “Heat treatment of 319.2 aluminum automotive alloy, part 1, solution heat treatment”, AFS Int. Cast Metals, Vol. 8, pp. 91-106. (1995)
7. L. A. Naraynan, F. H. Samuel and J. E. Gruzleski, “Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment”, Metallurgical and Materials Transactions A, Vol. 26A, pp. 2161-2174. (1995)
8. I. J. Polmear, “Light Alloys Metallurgy of the Light Metals”, 2nd ed., Edward Arnold, London, England, pp. 18-143. (1989)
9. L. E. Marsh and G. Reinenann, “Modern Casting”, American Foundry Society Trans., Vol. 87, pp. 413-422. (1979)
10. J. R. Davis, “Aluminum and Aluminum Alloys”, ASM Specialty Handbook ASM International, 3rd printing, p. 89. (1994)
11. J. Raffin, US Patent No. 3475166 (Oct. 26, 1969).
12. S. P. Ringer, K. Hono, T. Sakurai, I. J. Polmear, “ Cluster Hardening in an Aged Al-Cu-Mg Alloy ”, Scripta Materialia, Vol.36, No.5, pp.517-521.(1997)
13. William D. Callister Jr. “Materials Science and Engineering an Introduction”, Wiley, 4th ed., pp. 349-351. (1996)
14. John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International, Metals Park, Ohio, pp. 362. (1984)
15. Kearney, “Alloy History”, Trialco Aluminum Data Sheet, Table. 1, Chicago Heigth, IL. (1983)
16. J. R. Davis, “Aluminum and Aluminum Alloys”, ASM Specialty Handbook ASM International, 3rd printing, p. 25. (1994)
17. N. J. Davidson, “Review of the Mechanical Properties, Reliability and Usage of Ultra High Strength Aluminum Casting Alloys 201.0 and 206.0”, American Foundry Society Trans., pp. 232~247. (1988)
18. A. L. Kearney and J. Raffin, “Mechanical Properties of Aluminum Castings Alloys X206.0-t4 and XA206.0-t7 vs Comparable Alloys at Various Cooling Rates”, American Foundry Society Trans., pp. 559-570. (1977)
19. 鄭嘉仁, “Mn含量對A201鋁合金晶粒成長之影響”,國立中央大學機械工程研究所碩士論文。 (1992)
20. J. R. Davis, “Aluminum and Aluminum Alloys”, ASM Specialty Handbook ASM International, 3rd printing, p. 708. (1994)
21. I. J. Polmear, M. J. Couper, “Design and Development of an Experimental Wrought Aluminum Alloy for Use at Elevated Temperatures”, Metallurgical and Materials Transactions A, Vol. 19A, pp. 1027-1035. (1988)
22. I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge, S. Roger, “After Concorde: Evaluation of Creep Resistant Al-Cu-Mg-Ag Alloys”, Materials Science and Technology, Vol. 15, pp. 861-868. (1999)
23. B. C. Muddle, I. J. Polmear, “The Precipitate Ω Phase in Al-Cu-Mg-Ag Alloys”, Acta Metallurgica, Vol. 37, pp. 777-789. (1989)
24. K. Hono, N. Sano, S. S. Babu, R. Okano, T. Sakurai, “Atom Probe Study of the Precipitation Process in Al-Cu-Mg-Ag Alloys”, Acta Metallurgica et Materialia, Vol. 41, pp. 829-838. (1993)
25. R. K. Wyss, R. E. Sanders, “Microstructure-Property Relationship in a 2xxx Aluminum Alloy with Addition”, Metallurgical and Materials Transactions A, Vol. 19A, pp. 2523-2530. (1988)
26. M. Takeda, Y. Maeda, A. Yoshida, K. Yabuta, S. Konuma, T. Endo, “Discontinuity of G.P.(I) Zone and θ”-Phase in an Al-Cu Alloy”, Scripta Materialia, Vol. 41, pp. 643-649. (1999)
27. John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International, Metals Park, Ohio, pp. 143-144. (1984)
28. V. A. Phillips, “High Resolution Electron Microscope Observations on Precipitations in Al-3.0% Cu Alloy”, Acta Materialia, Vol. 23, pp. 751-767. (1975)
29. K. M. Knowles, W. M. Stobbs, “The Structure of {111} Age- Hardening Precipitates in Al-Cu-Mg-Ag Alloys”, Acta Crystallographica, Vol. B44, pp. 207-227. (1988)
30. I. J. Polmear, “Effects of small additions of silver on the aging of some aluminum alloys”, Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, Vol. 230 pp. 1331-1339. (1964)
31. J. T. Vietz and I. J. Polmear: J. Inst. Metals Vol. 94, pp. 410-417. (1966)
32. R. J. Chester and I. J. Polmear, “Metallurgy of Light Alloys”, Spring Residential Conf., Inst. of Metallurgists, London, Vol. 3, pp. 75-81. (1983)
33. A. Garg, Y. C. Chang, J. M. Howe, “Precipitation of the Ω Phase in an Al-4.0Cu-0.5Mg Alloy”, Scripta Metallurgica et Materialia, Vol. 24, pp. 677-680. (1990)
34. R. J. Chester, I. J. Polmear, “TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys”, Micron, Vol. 11, pp. 311-312. (1980)
35. A. K. Gupta, P. Gaunt and M. C. Chaturvedi, “Crystallography and Morphology of the S prime-phase Precipitate in an Al(CuMg) Alloy”, Philosophical Magazine A, Vol. A55, pp. 375-387. (1987)
36. S. P. Ringer, W. Yeung, B. C. Muddle, I. J. Polmear, “Precipitate Stability in Al-Cu-Mg-Ag Alloys Aged at High Temperatures”, Acta Metallurgica et Materialia , Vol. 42, pp. 1715-1725. (1994)
37. J. H. Auld, Acta Crystallographica, Vol. A28, S98. (1972)
38. S. Kerry and V. D. Scott, Metals. Sci., Vol. 18, pp. 289-294. (1984)
39. J. H. Auld, Mater. Sci. Technol., Vol. 2, pp. 784-787. (1986)
40. A. Garg and J. M. Howe, “Convergent-Bean Electron Diffraction Analysis of the Ω Phase in an Al-4.0Cu-0.5Mg-0.5Ag Alloy”, Acta Metallurgica et Materialia, Vol. 39, pp. 1939-1946. (1991)
41. G. W. Lorimer, in Precipitation Processes in Solids (edit by K. C. Russell and H. I. Aaronson), T. M. S.-A. I. M. E., Warrendale, Pa, pp. 87-119. (1978)
42. A. K. Mukhopadhyay, “Nucleation of Ω phase in an Al-Cu-Mg Alloy Containing Small Addition of Ag”, Materials Transactions, JIM, Vol. 38, pp. 478-482. (1997)
43. K. Hono, T. Sakurai, I. J. Polmear, “Pre-Precipitate Clustering in an Al-Cu-Mg-Ag Alloy”, Scripta Metallurgica et Materialia, Vol. 30, pp. 695-700. (1994)
44. L. Reich, M. Murayama and K. Hono, “Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy–A Three-Dimensional Atom Probe Study”, Acta Materialia, Vol. 46, pp. 6053-6062. (1998)
45. S. P. Ringer, K. Hono , I. J. Polmear and T. Sakurai, ”Nucleation of Precipitates in Aged Al-Cu-Mg-(Ag) Alloys with High Cu:Mg Ratios”, Acta Materialia, Vol. 44, pp. 1883-1898. (1996)
46. O. Beffort, C. Solenthaler, P. J. Iggovitzer, M. O. Speidel, “High Toughness and High Strength Spray-Deposited AlCuMgAg-Base Alloys for Use at Moderately elevated temperatures”, Materials Science and Engineering A, Vol. A191, pp. 121-134. (1995)
47. K. T. Moore, J. M. Howe and D. R. Veblen, “High-resolution and Energy-filtered TEM Imaging of Ag Segregation to Planar Precipitate-matrix Interfaces in an Al-Cu-Mg-Ag Alloy”, Philosophical Magazine B, Vol. 82, pp. 13-33. (2002)
48. K. Hono, “Atom Probe Microanalysis and Nanoscale Microstructures in Metallic Materials”, Acta Materialia, Vol. 47, pp. 3127-3145. (1999)
49. K. Hono, M. Murayama and L. Reich, “Proc. Int. Conference: Solid→Solid phase Transformation”, Kyoto, pp. 23-28. (May 1999)
50. R. B. Mears, R. H. Brown and E. H. Dix, Jr., “A Generalized Theory of the Stress Corrosion of Alloys, in Symposium on Stress-Corrosion Cracking of Metals”, ASTM and AIME, pp. 323-344. (1945)
51. S. Abis, P. Menqucci and G. Riontino, “Precipitation of metastable phases in a rapidly quenched Al-6wt.%Cu alloy”, Materials Science and Engineering A, Vol. A134, pp. 1175-1178. (1991)
52. D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, Chapman & Hall, N. Y. Van Nostrand Reinhold, pp. 55-56. (1981)
53. John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International, Metals Park, Ohio, pp. 264-280. (1984)
54. M. O. Speidel, “Stress Corrosion Cracking of aluminum alloys”, Metallurgical and Materials Transactions A, Vol. 6A, pp. 631-642. (1975)
55. W. Gruhl, “Stress Corrosion Cracking of High Strength Aluminum Alloys”, Z. Metallkd., Vol. 75, pp. 819-826. (1984)
56. ASTM B597-83, Annual Book of ASTM Standards, Vol. 02.02, (1984)
57. 莊雅傑,“Cu/Mg比與熱處理對Al-Cu-Mg-Ag合金應力腐蝕性之影響”,國立中央大學機械工程研究所碩士論文。(2002)
58. Robert E. Read-Hill, “Physical Metallurgy Principles”, PWS Publishing Company, 3rd ed., pp. 523-525. (1992)
59. 賴耿陽,“鑄物與非鐵金屬材料的熱處理”,復漢, p. 179. (1998)
60. John D. Verhoeven, “Fundamentals of Physical Metallurgy”, p. 353. (1974)
61. William D. Callister Jr. “Materials Science and Engineering an Introduction”, Wiley, 4th ed., p. 160. (1996)
62. E.D. Russo, M. Consserva, M. Buratti and F. Gatto, “A New Thermo-Mechanical Procedure for Improving the Ductility and Toughness of Al-Zn-Mg-Cu Alloys in the Transverse Directions”, Journal of Material Science and Engineering, Vol. 14, pp. 23-36. (1974)
63. H.Yoshida, “Journal of the JSTP”, Vol. 34, 390, pp. 764-770.(1993)
64. Robert E. Read-Hill, “Physical Metallurgy Principles”, PWS Publishing Company, 3rd ed., p. 248. (1992)
65. 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,“工程材料科學”,全華科技圖書股份有限公司,pp. 334-432. (1999)
66. Qiong Li and R. N. Shenoy, “DSC and TEM characterization of thermal stability of an Al-Cu-Mg-Ag Alloy”, Journal of Materials Science, Vol. 32, pp. 3401-3406. (1997)
67. S. P. Ringer, B. C. Muddle and I. J. Polmear, “Effects of Cold Work on Precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) Alloys”, Metallurgical and Materials Transactions A, Vol. 26A, pp. 1659-1671. (1995)
68. J. W. Shyu, C. L. Sheu, "The Application of Rare Earth Element in Cast Alloy(Ⅰ)", Journal of Chinese Foundrymen′s Association, Vol.19, pp. 45-69. (1993)
69. http://uncyclopedia.tw/wiki/%E9%80%B1%E6%9C%9F%E8%A1%A8
70. 王震東,“稀土元素的特性及其對電熱合金性質的影響”,機械技術月刊,pp. 124-133. (1997)
71. 陳登銘歐,“工業的維他命-稀土金屬”,科學月刊, Vol. 2, pp. 2-7. (2011)
72. V. G. Davydov, T. D. Tostove, V. V. Zakharov, Y. A. Filatov, and V. I. Yelagin, “Scientific Principle of Making an Alloying Addition of Scandium to Aluminium Alloys”, Materials Science and Engineering A, Vol. A280, pp. 30-36. (2000)
73. L. K. Lamikov and G. V. Samsonov, “Soviet Non-Ferrous Metals Res.” (USSR), Vol. 9, p. 79. (1964)
74. K. A. Gschneidner, F. W. Calderwood, Bull, “Alloy Phase Diag.” Vol.10, p. 34. (1989)
75. R. W. Cahn and P. Haasen, “Physical Metallurgy”, 4th ed., Vol. I, North-Holland, Chapter 4, pp. 205-370. (1996)
76. A. F. Norman, P. B. Prangnell, and R. S. McEwen, “The Solidification Behavior of Dilute Aluminum-Scandium Alloys”, Acta Materialia, Vol. 46, pp. 5715-5732. (1998)
77. Z. Yin, Q. Pan, Y. Zhang, and F. Jiang, “Effect of Minor Sc and Zr on the Microstructure and Mechanical Properties of Al-Mg Based Alloys”, Materials Science and Engineering A, Vol. A280 pp. 151-155. (2000)
78. K. B. Hyde, A. F. Norman, and P. B. Pragnell, “The Effect of Cooling Rate on the Morphology of Primary Al3Sc Intermetallic Particles in Al-Sc Alloys”, Acta Materialia, Vol. 49, pp. 1327-1337. (2001)
79. V. Ocenasek and M. Slamova, “Resistance to Recrystallization Due to Sc and Zr Addition to Al-Mg Alloys”, Materials Characterization, Vol. 47, pp. 157-162. (2001)
80. D. N. Seilman, E. A. Marquis, and D. C. Dunand, “Precipitation Strengthening at Ambient and Elevated Teperature of Heat-Treatable Al(Sc) Alloys”, Acta Materialia, Vol. 50, pp. 4021-4035. (2002)
81. “Applications of Scandium In Al-Sc Alloys”,
http://www/scandium.org/Sc-Al.html
82. D. Q. Wang, Q. L. Wang, “Effects of Rare Earth Additions on the As-Cast Microstructure and the Mechanical Properties of AlZnMgCu Alloy”, Special Casting and Nonferrous Alloys, No.6, pp. 3-6. (1998)
83. Y. Xu, X. B. Li, W. X. Yu, Z. D. Zhao, Y. H. Liu, J. Q. Zhang, “Effects of Rare Earth on Mechanical Properties and Stress Corrosion Behavior of Al-Zn-Mg Alloy”, Journal of Jilin University, Vol. 41, pp. 506-509. (2003)
84. B. D. Sun, K. Li, J. Wang, Y. H. Zhou, “Effects of La and Y on Hypereutectic Al-Si Alloy”, Journal of Shanghai Jiaotong University, Vol. 33, pp. 795-798. (1999)
85. A. R. Daud, Karen M. C. Wong, “The Effect of Cerium Additions on Dent Resistance of Al-0.5Mg-1.2Si-0.25Fe Alloy for Automotive Body Sheets”, Materials Letters, Vol. 58, pp. 2545-2547. (2004)
86. M. Liang, Z. Xiulin, T. Li , “Effect of Alkali Metal Impurities and Cerium Modification on The Fatigue Behaviour of 8090 Alloy Sheets” Materials Science and Engineering A, Vol. 196, pp. 191-196. (1995)
87. 蔡宇洲,“微量La與Ce稀土元素對A356(Al-7Si-0.35Mg)鑄鋁合金之影響”,國立中央大學機械工程研究所碩士論文。(2006)
88. M. L. Kharakterova, “Phase Composition of Al-Cu-Sc Alloys at Temperatures of 450 and 500℃, Izvestiya Akademii Nauk SSSR. Metally, pp. 195-199. (1991)
89. M. L. Kharakterova, D. G. Eskin, and L. S. Toropova, “Precipitation Hardening in Ternary Alloys of the Al-Sc-Cu and Al-Sc-Si Systems”, Acta Metallurgica et Materialia, Vol. 42, pp. 2285-2290. (1994)
90. V. V. Zakharov and T. D. Rostova, “On the Possibility of Scandium Alloying of Copper-Containing Aluminum Alloys", Metal Science and Heat Treatment, Vol. 37, pp. 65-69. (1995)
91. A. F. Norman, K. Hyde, F. Costello, S. hompson, S. Birley, and P. B. Prangnell, “Examination of the Effect of Sc on 2000 and 7000 Series Aluminum Alloy Castings : for Improvements in Fusion Welding”, Materials Science and Engineering A, Vol. A354, pp. 188-198. (2003)
92. K. Yu, W. Li, S. Li, and J. Zhao, “Mechanical Properties and Microstructure of Aluminum Alloy 2618 with Al3(Sc, Zr) Phases", Materials Science and Engineering A, Vol. A368, pp. 88-93. (2004)
93. 簡朝棋,“A201 鋁合金添加稀士元素後之機械性能研究",國立臺灣大學材料科學與工程學研究所碩士論文。(2002)
94. J. H. Jun, J. M. Kim, K. D. Seong, K. T. Kim, W. J. Jung, “Enhanced Mechanical Properties of A206 Aluminum Casting Alloy By Addition of Rare Earth Elements”, Materials Science Forum, Vol. 475-479, pp. 441-444. (2005)
95. D. H. Xiao, J. N. Wang, D. Y. Ding, H. L. Yang, “Effect of Rare Earth Ce Addition on The Microstructure and Mechanical Properties of an Al-Cu-Mg-Ag Alloy” Journal of Alloys and Compounds, Vol. 352, pp. 84-88. (2003)
96. D. H. Xiao, M. Song, K. H. Chen, B. Y. Huang, “Effect of Rare Earth Yb Addition on mechanical properties of an Al-5.3Cu-0.8Mg-0.6Ag Alloy” Materials Science and Technology, Vol. 23, pp. 1156-1160. (2007)
97. S. Bai, Z.Y. Liu, Y.T. Li, Y.H. Hou, “Microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with addition of rare earth Er”, Materials Science and Engineering A, Vol. 527, pp. 1806-1814. (2010)
98. D.M. Yao, W.G. Zhao, H.L. Zhao, F. Qiu, “High creep resistance behavior of the casting Al-Cu alloy modified by La”, Scripta Materialia, Vol. 61, pp. 1153-1155. (2009)
99. D.M. Yao, Y.M. Xia, F. Qiu, Q.C. Jiang, “Effect of La addition on the elevated temperature properties of the casting Al-Cu alloy”, Materials Science and Engineering A, Vol. 528, pp. 1463-1466. (2011)
100. D. Yao, F. Qiu, Q. Jiang, Y. Li. Arnberg L, “Effect of lanthanum on grain refinement of casting aluminum-copper alloy”, International Journal of Metal Casting, Vol. 7, pp. 49-54. (2013)
101. 張志鴻,“合金元素(銀與鎂)與熱處理對A201鋁合金應力腐蝕與熱穩定性之影響”,國立中央大學機械工程研究所博士論文。(2005)
102. ASTM E112-88, Annual Book of ASTM Standards, Vol. 03.01, 1999
103. 歐炳隆,“鋁合金的製造技術與原理”,國立中央大學機械所授課教材,第五章p.1.
104. 汪建民,“材料分析”,中國材料科學學會,新竹,pp. 560-563.(1998)
105. ASTM B557M-81, Annual Book of ASTM Standards, Vol. 03.01. (1991)
106. A. K. Mukhopadhyay, “On the Nature of the Second Phase Particles Present in an As-Cast Al-Cu-Mg-Ag Alloy, Scripta Materialia, Vol. 41, pp. 667-672. (1999)
107. A. K. Mukhopadhyay, “Compositional Characterization of Cu-Rich Phase Particles Present in As-Cast Al-Cu-Mg-(Li) Alloys Containing Ag”, Metallurgical and Materials Transactions A, Vol. 30A, pp. 1693-1704. (1999)
108. D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, A Textbook for Materials Science, Plenum Pres, New York, pp. 9-11. (1996)
109. K. Osamura, N. Otsuka and Y. Murakami, “Resistivity Maximum during Guinier-Preston Zone Formation in an Al-4%Cu alloy”, Philosophical Magazine B, Vol. B45, pp. 583-599. (1982)
110. G. Riontino and S. Abis, “Scanning electrical resistivity (SER) study of phase transformations in an Al-Cu alloy”, Philosophical Magazine B, Vol. B64, pp. 447-461. (1991)
111. John E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International, Metals Park, Ohio, pp. 113-116. (1984)
112. O. Beffort, C. Solenthaler, M. O. Speidel, “Improvement of Strength and Fracture Toughness of a Spray-Deposited Al-Cu-Mg-Ag-Mn-Ti- Zr Alloy by Optimize Heat Treaments and Thermomechanical Treatments”, Materials Science and Engineering A, Vol. A191, pp. 113-120. (1995)
113. V. I. Elagin, V. V. Zakharov, and T. D. Rostova, “Scandium-Alloyed Aluminum Alloys, Metal Science and Heat Treatment, Vol. 1, pp. 37-45. (1992)
114. Y. Harada and D. C. Dunand, “Microstructure of Al3Sc with Ternary Transition-Metal Additions”, Materials Science and Engineering A, Vol. A329-331, pp. 686-695. (2002)
115. G. M. Novotny, A. J. Ardell, “Precipitation of Al3Sc in Binary Al-Sc Alloys", Materials Science and Engineering A, Vol. A318, pp. 144-154. (2001)
116. L. D. Castillo and E. J. Lavernia, “Microstructure and Mechanical Behavior of Spray-Deposited Al-Cu-Mg(-Ag-Mn) Alloys”, Metallurgical and Materials Transactions A, Vol. 31A, pp. 2287-2298. (2000)
117. S. Abis, P, Mengucci, and G. Riontino, “A Study of the High-TemperatureAgeing of Al-Cu-Mg-Ag Alloy A201", Philosophical Magazine B, Vol. 67, pp. 465-484.(1993)
118. J. R. Pickens and T. J. Langan, “The Effect of Solution Heat-Treatment on Grain Boundary Segregation and Stress-Corrosion Cracking of Al-Zn-Mg Alloys”, Metallurgical and Materials Transactions A, Vol. 18A, pp. 1735-1744. (1987)
119. A.J. Cornish and M.K.B. Day, “The Effect of Variable Quenching Conditions on the Relationship between the Stress-Corrosion-Resistance, Tensile Properties and Microstructure of a High-Purity Al-Zn-Mg Alloy”, J. Inst. Metals, Vol. 99, pp. 377-384. (1971)
120. 劉永輝、張佩芬,“金屬腐蝕學原理”,航空工業出版社,pp. 124-150. (1993)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2015-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明