博碩士論文 102326003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.119.132.35
姓名 陳誼庭(Yi-Ting Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 雙重功能層柱改質黏土之製備與其吸持特性之研究
(Preparation and sorption properties of dual functions modified clay)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自然環境下,污染物通常為無機及有機物同時存在。一般土壤攜帶負電且對金屬離子具有高親和力,對於有機污染物則礙於有機質含量及土壤水分含量導致吸持性不顯著。傳統土壤改質劑雖可增加土壤有機質含量且提高對有機污染物之吸持能力,但是,對金屬離子並不具親和力。
本研究選用五種分別含有不同官能基與不同碳鏈之改質劑,利用陽離子交換法進行人造黏土改質,藉由改質劑的特殊構造及官能基,使得改質土壤可同時吸附/吸持無機與有機污染物。由實驗結果可以發現,改質後的土壤藉由特性分析以了解改質前後之差異,X 光繞射儀的分析可以得知層間距離從15 Å增加至18~53Å,觀察出層間距離的增加與改質劑之碳鏈長度長短及添加量有極大的相關性。利用傅立葉紅外線光譜儀得知,經改質後的黏土表面較未改質者增加烷基碳鏈、羧機等官能基之特徵波峰,且利用重鉻酸鉀迴流法檢測其有機碳含量,證明已成功將黏土改質成功。土壤以有機相分佈之方式吸持BTEX,而改質後黏土提供良好的分佈介質,由吸持結果可觀察出改質劑的結構與疏水性分佈環境會影響BTEX的吸持,且分佈常數(Kd)與有機碳含量有明顯的相關性存在。由於改質黏土經由離子交換法鍵結於土壤表面,使得部分吸附位置被占據且改質劑提供的官能基量不多,造成吸附量較未改質時低,但仍達成本研究之目的,製備出得以同時吸附重金屬及有機污染物(BTEX)的改質黏土。
摘要(英) In general, soil posseses negatively charged and having a high affinity for metal ions only. Soil has no capacity of partitioning for nonionic organic pollutants because the nonionic organic pollutants are carried out with partitioning by soil organic matter. If the soil does not contain a high content of organic matters, the partition capacity of soil would be low. However, the inorganic and organic pollutants usually coexist presenting time in the environment. In general, the traditional methods of modification of soils usually improve the content of soil organic matter but often loss the capacity of adsorption for ionic pollutants.
In this study, we have synthesized modified-montmorillonites using Na-montmorillonites and surfactants with different alkyl chain number, chain length and functional groups. Such modification, makes Na-montmorillonites possible for simultaneous adsorption / sorption of inorganic and organic pollutants. The most widely used technique for studying intercalated materials in the silicate galleries is X-ray diffraction (XRD), which provides information on the layered structure and the basal spacing. The results showed that for the modified clay the basal spacing increased from 15 to ~ 18-53Å, and the interlamellar space is defendent on the carbon chains of the modifiers and also its dosage. Nitrogen adsorption-desorption device can confirm the amount of modifier resulted in an average pore size than the unmodified sample. Fourier infrared spectroscopy also informed that the modified clay surface contains the specific functional groups (e.g. alkyl and Carboxyl functional) and modification relatively changed upon increasing the alkyl carbon chain of modifiers. Detected organic carbon content by dichromate reflux method have proven the successful modification. Sorption of BTEX by modified soil indiacated that distribution of BTEX and water solubility of organic adsorbate is disproportional to its partition coefficient. Also, the distribution and behavior of BTEX by hydrophobic modification of soil is affected by the environment conditions and structure. The organic modifiers improved the distribution of nonionic organic compounds better is shown in this study. Since, the modified clay is bonded on surface of soil by ion exchange, parts of adsorption sites are occupied and the modified agent can not provide a lot of functional groups and then cause for less adsorption capacity than pristine clay. But, the purpose to prepare the modified clay that can absorb both heavy metal and BTEX at the same time has been obtained in this study.
關鍵字(中) ★ 改質黏土
★ BTEX
★ 層間距
★ 分佈係數
關鍵字(英) ★ modified clay
★ BTEX
★ basal spacing
★ partition coefficient
論文目次 目錄 ………………………………………………………… i
圖目錄 ………………………………………………………… iv
表目錄 ………………………………………………………… vii
第一章 前言…………………………………………………… 1
1-1 研究緣起……………………………………………… 1
1-2 研究目的與內容……………………………………… 2
第二章 文獻回顧……………………………………………… 3
2-1 土壤基本性質………………………………………… 3
2-1-1 土壤無機相…………………………………………… 3
2-1-2 土壤有機質…………………………………………… 5
2-1-3 土壤陽離子交換容量………………………………… 6
2-2 界面活性劑…………………………………………… 8
2-2-1 界面活性劑的種類…………………………………… 9
2-2-2 臨界微胞濃度………………………………………… 10
2-2-3 土壤與界面活性劑間之作用………………………… 11
2-3 土壤對有機污染物之吸持作用……………………… 12
2-3-1 土壤無機相吸附作用 (adsorption) ………………… 12
2-3-2 土壤有機相的兩相間分布作用(partition) …………… 13
2-3-3 等溫吸附模式………………………………………… 15
2-3-4 等溫吸附曲線………………………………………… 18
2-3-5 遲滯現象……………………………………………… 20
第三章 研究方法……………………………………………… 23
3-1 研究內容與流程……………………………………… 23
3-2 實驗設備與儀器……………………………………… 25
3-2-1 實驗設備……………………………………………… 25
3-2-2 實驗儀器……………………………………………… 26
3-3 實驗材料……………………………………………… 28
3-3-1 不含有機質土壤……………………………………… 28
3-3-2 有機改質劑…………………………………………… 29
3-3-3 非離子性有機污染物………………………………… 29
3-3-4 重金屬標準品………………………………………… 31
3-3-5 溶劑…………………………………………………… 31
3-4 實驗方法……………………………………………… 32
3-4-1 有機黏土之製備……………………………………… 32
3-4-2 改質土壤對重金屬之吸附實驗……………………… 34
3-4-3 改質土壤對 NOCs 之吸持實驗……………………… 36
第四章 結果與討論…………………………………………… 37
4-1 改質土壤之物化特性分析…………………………… 37
4-1-1 小角度 X 光繞射分析………………………………… 37
4-1-2 比表面積、平均孔徑與孔徑分佈…………………… 43
4-1-3 傅立葉轉換紅外線光譜儀…………………………… 48
4-1-4 有機碳含量分析 …………………………………… 53
4-2 改質土壤對有機污染物之吸持作用………………… 55
4-2-1 吸持實驗之檢量線…………………………………… 55
4-2-2 吸持實驗之回收率…………………………………… 56
4-2-3 不同改質土壤對 BTEX 吸持之影響………………… 57
4-2-4 不同吸附質之吸持行為……………………………… 65
4-2-5 改質土壤特性對 NOCs 分佈常數之影響…………… 69
4-3 改質土壤對重金屬之吸附作用……………………… 74
4-3-1 不同改質土壤對重金屬吸附之影響………………… 75
4-3-2 自行改質土壤與市售吸附劑之比較………………… 80
第五章 結論與建議…………………………………………… 82
5-1 結論…………………………………………………… 82
5-2 建議…………………………………………………… 83
參考文獻 ………………………………………………………… 84
參考文獻 1. Usuki A.; Kojima Y.; Kawasumi M.; Fukushima Y.; Okada A.; Kurauchi T., “Synthesis of nylon-6-clay hybrid”, J Mater Res, 8, pp. 1179–1184, (1993)
2. 張仁福,“土壤污染防治學”,高雄復文,初版,(1998)
3. B. M. Braja 原著,胡德欽譯,“土壤力學”,高立,初版,(1997)
4. 洪崑煌譯,“土壤化學”,國立編譯館,初版,(1996)
5. Ray R. Weil and Nyle C. Brady, ”The Nature and Properties of Soils”, 4th Ed, Pearson Prentice Hall, (2007)
6. 莊雅婷,“具特殊官能基之土壤對水溶液中有機與無機污染物吸持行為之研究”,碩士論文,國立中央大學環境工程研究所,(2001)
7. 王一雄,“土壤環境污染與農藥”,文海環境科學叢書,初版,(1999)
8. McBride, M. B., “Environmental Chemistry of Soils”, Oxford University Press, Inc., (1994)
9. Chiou, C. T. and Kile, D. E., “Water Solubility Enhancement of DDT and Trichlorobenzene by some surfactant Below and Above the Critical Micelle Concentration”, Environ. Sci. & Technol., Vol. 23, No. 7, p.832-838, (1989)
10. 刈米孝夫原著,王鳳英編譯,“界面活性劑的原理與應用”,高立圖書有限公司,五版,(1998)
11. 趙承琛,“工業升級之特用化學品-界面活性劑”,復文書局,初版,(1993)
12. L. I. Osipow原著,高文弘,周賢孟譯著“界面化學”,黎明,四版,(1998)
13. 廖明隆編譯“界面化學與界面活性劑”,文源,再版,(1994)
14. Nevskaia, D. M.; Ruiz, A. G. and Gonzalez, J. D., “Adsorption of Polyoxyethylenic Surfactants on Quartz, Kaolin, and Dolomite: A Correlation between Surfactant Structure and Soil Surface Nature”, Colloid and Interface Sci., Vol. 181, p.571-580, (1996)
15. Liu, Z.; Laha, S.; and Luthy, R. G., “Surfactant Solubilization of Polycyclic Aromatic Hydrocarbon Compounds in Soil-Water Suspensions”, Water Science and Technology, Vol. 29, No. 4, p.903-913, (1995)
16. Q. Xu, E. D. Snell, “Adsorption Behavior of Alkylarylethoxylated Alcohols on Silica”, Journal of Colloid and Interface Science, Vol. 144, No. 1, p.165-173, (1991)
17. 陳百合,“不同土壤組成對界面活性劑吸附機制之研究”,碩士論文,中央大學環境工程研究所,(1997)
18. Lambert, SM, “Functional Relationship Between Sorption in Soil and Chemical Structure”, J. Agric. Food Chem., 15, 572-576, (1989)
19. Lambert, SM; Porter, PE and Schieferstein, RH, “Movement and Sorption of Chemicals Applied to the Soil”, Weed, 13, 185-190, (1965)
20. Chiou, CT;Louis, JP and Virgil, HF, “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science, 206, 831-832, (1979)
21. 林芳伃,“多重功能改質黏土之吸持與催化特性研究”,碩士論文,國立中央大學環境工程研究所,(2012)
22. Chiou, C.T., “Partition and Adsorption of Organic Contaminants in Environmental Systems”, Hoboken, N.J. : Wiley-Interscience, (2002)
23. Chiou, C.T.; Louis, J.P.; and Virgil, H.F., “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science,206, 831-832, (1979)
24. Chiou, C.T.; Porter, P.E.; and Schmedding, D.W., “Partition Equilibriaof Nonionic Organic Compounds between Soil Organic Matter and Water”, Environ. Sci. Technol., 17, 227-231, (1983)
25. Means, J.C.; Wood, S.G.; Hassett, J.J.; and Banwart. W.L., “Sorption of Polynuclear Aromatic Hydrocarbons by Sediments and Soils”, Environ. Sci. Technol., 14, 1524-1528, (1980)
26. Grathwohl, P., “Influence of Organic Matter from Soils and Sediments from Various Organicon the Sorption of Some Chlorinated Aliphatic Hydrocarbons : Implications on Koc Correlations”, Environ. Sci. Technol, 24, 1687-1693, (1990)
27. Murphy, E.M.; Zachara, J.M.; and Smith, S.C., “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds”, Environ. Sci. Technol., 24, 1507-1516, (1990)
28. Xing, B.; McGil, B.; and Dudas, M.J., “Sorption of α-Naphthol onto Organic Sorbents Varying in Polarity and Aromaticity”, Chemosphere, 28, 145-153, (1994)
29. Ruthven, D. M., “Principles of Adsorption and Adsorption Process”, John Wiley & Sons (1984)
30. Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller, J. Am.Chem.Soc., 62, pp.1723 (1940)
31. IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1,Colloid and Surface Chemistry, Pure Appl. Chem. 31, 578, (1972)
32. 楊逸禎,“土壤無機相對有機污染物吸附特性之研究”, 碩士論文,國立中央大學環境工程研究所,(2007)
33. Wang, X. S.; Qin, Y., “Equilibrium sorption isotherms for of Cu2+ on rice bran”, Process Biochemistry, 40, pp.677-680 (2005)
34. Gulnaziya Issabayeva, Mohamed Kheireddine Aroua, Nik Meriam Nik Sulaiman, “Removal of lead from aqueous solutions on palm shell activated carbon”, Bioresource Technology, 97, pp.2350-2355 (2006)
35. Carrott, P. J. M.; Ribeiro Carrott, M. M. L.; Nabais J. M. V. and Prates Ramalho J. P., “Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons”, Carbon, 35, pp.403-410 (1997)
36. Buerger M. J., Elementary Crystallography, John Wiley & Sons, New York, (1963)
37. Lagaly, G., “Interaction of alkylamines with different types of layered compounds”, Solid State Ionics, 22(1), 43-51, (1986)
38. Li, Y.Q.; Ishida, H., “Concentration-dependent conformation of alkyl tail in the nanoconfined space: hexadecylamine in the silicate galleries”, Langmuir, 19, pp. 2479–2484, (2003)
39. He, H.P.; Zhou, Q.; Martens, W.N.; Kloprogge, T.J.; Yuan, P.; Xi, Y.F.; Zhu, J.X.; Frost, R.L., “Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics”, Clays Clay Miner., 54, pp. 689–696, (2006)
40. He, H.; Ma, Y.; Zhu, J.; Yuan, P.; Qing, Y., “Organoclays prepared from montmorillonites with different cation exchange capacity and surfactant configuration”, Applied Clay Science, 48 (1–2), 67-72, (2010)
41. He, H.P.; Ray, F.L.; Zhu, J.X., “Infrared study of HDTMA+ intercalated montmorillonite”, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 60, (12): 2853-2859, (2004)
42. Silva, S.M.L. and C.R.C. Braga, “Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites”, Federal University of Campina Grande, Department of Materials Engineering.
43. Barman, S., Venkataraman, N.V., Vasudevan, S., Seshadri, R., “Phase transitions in the anchored organic bilayers of long-chain alkylammonium lead iodides (CnH2n+1NH3)2PbI4; n = 12, 16, 18”, Journal of Physical Chemistry B, 107 (8), pp. 1875-1883, (2003)
44. Ma, Y.; Zhu, J.; He, H.; Yuan, P.; Shen, W.; Liu, D., “Infrared investigation of organo-montmorillonites prepared from different surfactants”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (2), 122-129, (2010)
45. Adballah, W.; Yilmazer, U.; “Novel thermally stable organo-montmorillonites from phosphonium and imidazolium surfactants”, Thermochimica Acta, 525 (1–2), 129-140, (2011)
46. Ahmed, A. A.; Thiele-Bruhn, S.; Aziz, S. G.; Hilal, R. H.; Elroby, S. A.; Al-Youbi, A. O.; Leinweber, P.; Kühn, O., “Interaction of polar and nonpolar organic pollutants with soil organic matter: Sorption experiments and molecular dynamics simulation”, Science of The Total Environment, 508 (0), 276-287, (2015)
47. Chiou, C. T.; Mcgroddy, S. E.; Kile, D. E., “Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments”, Environmental Science and Technology, 32, 264–269, (1998)
48. Lee, J. F.; Chang Y. T.; Chao H. P.; Huang H. C.; Hsu M. H., “Organic compound distribution between nonionic surfactant solution and natural solids: Applicability of a solution property parameter”, Journal of Hazardous Materials, 129(1–3), p. 282-289, (2006)
49. Zhu, J., Cozzolino, V., Pigna, M., Huang, Q., Caporale, A. G. and Violante, A., “Sorption of Cu, Pb and Cr on Na-montmorillonite: Competition and effect of major elements”, Chemosphere, 84(4): 484-489. (2011)
50. Saygideger, S.; Gulnaz, O.; Istifli, E.S.; Yuxel, N., “Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L effect of physicochemical environment”, J. Hazard. Mater. 126, 96-104, (2005)
51. Perić, J.; Trgo, M.; Vukojević Medvidović, N., “Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms”, Water Research 38(7): 1893-1899, (2004)
52. Putra, W. P.; Kamari, A.; Yusoff, S. N. M.; Ishak, C. F.; Mohamed, A.; Hashim, N; Isa, I. M., “Biosorption of Cu(II), Pb(II) and Zn(II) Ions from Aqueous Solutions Using Selected Waste Materials: Adsorption and Characterisation Studies”, Journal of Encapsulation and Adsorption Sciences, 4, 25-35, (2014)
53. Sulaymon, A. H.; Abid, B. A.; Al-Najar, J. A, “Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers”, Chemical Engineering Journal, 155(3), 647-653, (2009)
指導教授 李俊福(Jiunn Fwu Lee) 審核日期 2015-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明