博碩士論文 993403005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.119.124.194
姓名 胡立成(Li-cheng Hu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電子迴旋共振電漿於本質矽薄膜沉積製程之研究
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究整合Langmuir電漿探針、光放射光譜儀(Optical Emission Spectroscopy , OES)以及四極柱質譜儀(Quadrupole mass analyzer, QMS)等設備,並搭配磁化電漿模型修正、光化線強度測定(Optical Actinometry)以及電離能閥值質譜分析 (Threshold ionization mass spectrometry,TIMS)等方法針對電子迴旋(Electron cyclotron resonance,ECR)共振化學氣相沉積矽薄膜製程進行探討。本研究之主要目標係為理解在進行本質型矽薄膜沉積製程時,ECR電漿工作參數、電漿內部性質以及矽薄膜性質三者間之關聯,除分別量測電子溫度、電/離子密度、電漿電位等電漿物理性質以及自由基化學組成的改變外,再根據相對應之製程參數所生成之本質型矽薄膜之光敏感度、微結構因子以及氫含量等矽薄膜特性,建構工作參數、ECR電漿特性以及矽薄膜性質之關聯性與運作機制理論,改善矽薄膜結構性質、光敏感度與沉積均勻性。此外,電漿診斷方法以及不同設備間之相異結果也在本研究中被討論並說明,吾人發現:OES自由基光譜比值,確實可做為電子溫度趨勢的相對指標,然而, 在ECR-CVD電漿製程中,使用Hβ /Hα 較 Si/SiH 更為適當。此外,實時原位探針診斷需考量探針沉積物對量測結果的影響;ECR-CVD製程中,磁場所造成的陰影效應比過去文獻中所估計地更為嚴重。薄膜沉積速度不僅受到電子密度與電漿中矽薄膜前驅物(SiHx)濃度影響,事實上,在如ECR-VD等高表面能的環境下,矽薄膜生長速度受到電漿物理狀態所影響的程度,可能會大於過去研究的估計。在ECR-CVD製程中,微結構因子與TIMS定量計算所得之SiH2 /SiH3 自由基相對濃度趨勢高度吻合, 且R*在大部分的情況下皆與光敏感度呈正相關,故SiH2 /SiH3可作為未來製程中的薄膜品質預測指標,於higher silane不易觀測的時候,取代傳統HSRS (higher silane related reactive species)法。電漿均勻度大致等效於薄膜均勻度,薄膜性質多受電漿巨觀特性影響,無法依照電漿各點狀態作為連結依據。最終,吾人除成功整合電漿診斷工具與方法外,並發現由於檢測設備的功能侷限性,以及電漿的複雜性質,單一診斷工具容易造成誤判,因此整合Langmuir probe, QMS與OES進行電漿診斷確有其必要性。
摘要(英) In this study, we present the application of quadrupole mass spectrometry (QMS) with threshold ionization mass spectrometry (TIMS), optical emission spectroscopy (OES) with an actinometry method, and Langmuir probe (LP) as an integrated technique for in situ plasma characterization of the electron cyclotron resonance chemical vapor deposition (ECR-CVD) of hydrogenated amorphous silicon (a-Si:H). The main aim of this study was to determine the relationship among the process parameters, plasma characteristics, and thin film properties, including the microstructure parameter (R*), hydrogen content (CH), and a-Si:H film growth rate. The physical properties of plasma, such as the electron density (Ne), electron energy (Te), and sheath potential (Vs), were studied using an LP and OES. In addition to the general plasma properties, the ion density (Ni) and plasma electronegativity were examined. The results indicate the ECR plasma source has high potential for producing a high-quality a-Si:H film because of the availability of few high silanes (SinH2n+2, n>2); furthermore, the results indicate an obvious difference in the QMS analysis results between plasma and gas. Therefore, the consumption of parent molecules must be considered. The TIMS method was applied to estimate the relative concentration of ground-state silane radicals (SiHx, x < 4) and consumption of SiH4. The results indicate that, in addition to the degree of ionization, the consumption of SiH4 and Vs are key factors affecting the thin film growth rate. When microwave power density increases, the values of Ni, Ne, and Vs increase considerably, but the plasma electronegativity remains unchanged. Furthermore, we compared our results with the TIMS analysis reported by other authors and found that the ratio of SiH2 to SiH3 obtained using QMS and TIMS can be considered an indicator of film quality for R* in the ECR-CVD process.
關鍵字(中) ★ 電漿診斷
★ 本質型非晶矽薄膜
★ 電子迴旋共振電漿
★ 化學氣相沉積
關鍵字(英) ★ Plasma diagnostics
★ Intrinsic Amorphous Silicon Thin-Film.
★ Electron cyclotron resonance plasma
★ Chemical Vapor Deposition
論文目次 摘要 i
英文摘要 ii
目錄 iii
圖目錄 vi
表目錄 xii
一、 緒論 1
1-1 背景 1
1-2 研究動機與目標 7
1-3 論文架構 9
二、ECR電漿原理與矽薄膜電漿製程 11
2-1 電漿 11
2-2 電子迴旋共振電漿 14
2-2-1 電子迴旋共振運動 14
2-2-2 帶電粒子迴旋運動之漂移速度 15
2-2-3 磁約束力 16
2-2-4 博姆擴散 17
2-2-5 電漿頻率 17
2-2-6 電漿波 18
2-3 薄膜化學氣相沉積製程 25
2-4 ECR-CVD電漿非晶矽薄膜沉積方法與反應原理 33
三、電漿診斷原理、應用與研究回顧 38
3-1 電漿診斷工具 38
3-2 Langmuir探針原理、應用與限制 40
3-3 光放射光譜儀原理、應用與限制 49
3-4 四級柱質譜儀之原理、應用與限制 54
四、研究設備、條件與方法 59
4-1 實驗流程 59
4-2 實驗設備 – ECR-CVD 61
4-3 自製可移動Langmuir探針 64
4-4 光放射光譜儀(OES)與四極柱質譜儀(QMS) 66
4-5 薄膜特性分析設備 69
4-6 實驗方法 75
五、結果與討論 77
5-1 即時性電漿量測探針可靠度驗證 77
5-2 微波功率 81
5-3 工作壓力 104
5-4 氣體配比(氫稀釋率) 128
5-5 磁場組態 149
5-6 製程參數最佳化 178
六、結論與建議 182
參考文獻… 185
附錄A. List of Publications 201

參考文獻 [1] P. C. Choubey, A. Oudhia, R. Dewangan, “A review - Recent Research in Science and Technology”, Rec Res Sci Technol., Vol 4, pp. 99-101, 2012.
[2] J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, “Potential of amorphous and microcrystalline silicon solar cells”, Thin Solid Films, Vol 451-452, pp. 518-524, 2004.
[3] M. Yoshimi, T. Sasaki, T. Sawada, T. Suezaki, T. Meguro, T. Matsuda, K. Santo, K. Wadano, M. Ichikawa, A. Nakajima, K. Yamamoto, “High efficiency thin film silicon hybrid solar cell module on 1m2 – class large area substrate”, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, pp. 1566-1569, Osaka, Japan, May 2003.
[4] E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, “Sanyo′s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, Proceedings of 4th World Conference on Photovoltaic Energy Conversion, 1455-1460, Waikoloa, USA, May, 2006.
[5] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, “Twenty-two percent efficiency HIT solar cell”, Sol. Energy Mater. Sol. Cells, Vol 93, pp. 670-673, 2009.
[6] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, “Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Jpn. J. Appl. Phys, Vol 31, pp. 3518-3522, 1992.
[7] M. Sasaki, S. Okamoto, Y. Hishikawa, S. Tsuda, S. Nakano, “Characterization of the defect density and band tail of an a-Si:H i-layer for solar cells by improved CPM measurements”, Sol. Energy Mater. Sol. Cells, Vol 34, pp. 541-547, 1994.
[8] Y. Hishikawa, M. Isomura, S. Okamoto, H. Hashimoto and S. Tsuda, “Effects of the i-layer properties and impurity on the performance of a-Si solar cells”, Sol. Energy Mater. Sol. Cells, Vol 34, pp. 303-312, 1994.
[9] M. Kondo, “Microcrystalline materials and cells deposited by RF glow discharge”, Sol. Energy Mater. Sol. Cells, Vol 78, pp. 543-566, 2003.
[10] H. Curtins, N. Wyrsch, M. Favre, A. V. Shah, “Influence of plasma excitation frequency fora-Si:H thin film deposition”, Plasma Chem. Plasma Process, Vol 7, pp. 237-267, 1987.
[11] A. Shah, J.Dutta, N. Wyrsch, K. Prasad, H. Curtins, F. Finger, A. Howling, Ch. Hollenstein, VHF Plasma Deposition: A Comparative Overview, Proceedings of the MRS Symp, San Francisco, USA, April, 258 (1992), 15-26.
[12] H. Matsumura, Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon, J. Appl. Phys. 65 (1989) 4396-4402.
[13] S. Nishida, H. Tasaki, M. Konagai, and K. Takahashi, Highly conductive and wide band gap amorphous‐microcrystalline mixed‐phase silicon films prepared by photochemical vapor deposition, J. Appl. Phys. 58 (1985) 1427-1431.
[14] T. Ono, M. Oda, C. Takahashi, and S. Matsuo, Reactive ion stream etching utilizing electron cyclotron resonance plasma, J. Vac. Sci. Technol. B, 4 (1986) 696-700
[15] S. Matsuo and M. Kiuchi, Low Temperature Chemical Vapor Deposition Method Utilizing an Electron Cyclotron Resonance Plasma, Jpn. J. Appl. Phys. 22 (1983) L210-L212.
[16] Y. Ueda, Y. Inoue, S. Shinohara, Y. Kawai, Deposition of large area amorphous silicon films by ECR plasma CVD, Vacuum, 48 (1997) 119-122.
[17] H.L. Hsiao, H.L. Hwang, A.B. Yang, L.W. Chen, T.R. Yew, Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Appl. Surf. Sci, Vol 142, pp. 316-321, 1999.
[18] S. Kageyama, M. Akagawa, H. Fujiwara, Ellipsometry characterization of a-Si:H layers for thin-film solar cells, J. Non-Cryst. Solids. 358 (2012) 2257-2259.
[19] I. Sieber, N. Wanderka, I. Kaiser, W. Fuhs, Electron microscopic characterization of microcrystalline silicon thin films deposited by ECR-CVD, Thin Solid Films 403-404 (2002) 543-548.
[20] Y. Nakano, S. Goya, T. Watanabe, N. Yamashita, Y. Yonekura, High-deposition-rate of microcrystalline silicon solar cell by using VHF PECVD, Thin Solid Films 506-507 (2006) 33-37.
[21] S. Ferrero, P. Mandracci, G. Cicero, F. Giorgis, C.F. Pirri, G. Barucca, Large area microcrystalline silicon films grown by ECR-CVD, Thin Solids Films 383 (2001) 181-184.
[22] D.H. Thang, H. Muta, Y. Kawai, Investigation of plasma parameters in 915 MHz ECR plasma with SiH4/H2 mixtures, Thin Solid Films 516 (2008) 4452-4455.
[23] G.J.H. Brussaard, M. van der Steen, M. Carrere, M.C.M. van de Sanden, D.C. Schram, Langmuir probe measurements in expanding magnetized argon, nitrogen and hydrogen plasmas, Surf. Coat. Technol. 98 (1998) 1416-1419.
[24] M. Koga, Y. Hishikawa, H. Tsuchiya, Y. Kawai, Production of a large diameter ECR plasma with low electron temperature, Thin Solid Films 506-507 (2006) 499-502.
[25] S.F. Yoon, K.H. Tan, Q. Zhang, M. Rusli, J. Ahn, L. Valeri, Effect of microwave power on the electron energy in an electron cyclotron resonance plasma, Vacuum 61 (2001) 29-35.
[26] N. Kosku, S. Miyazaki, Insights into the high-rate growth of highly crystallized silicon films from inductively coupled plasma of H2-diluted SiH4, Thin Solid Films 511-512 (2006) 265-270.
[27] L. Kroely, S. K. Ram, P. Bulkin, P.R.I Cabarrocas, Microcrystalline silicon films and solar cells deposited at high rate by Matrix Distributed Electron Cyclotron Resonance (MDECR) plasma, Phys. Status Solidi. C 7 (2010) 517-520.
[28] 顧鴻濤 著,太陽能電池元件導論,全威圖書,2009年。
[29] M.A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing 2nd ed., Wiley, New York, 2005.
[30] F.F. Chen and J.P. Chang, Lecture Notes on Principles of Plasma Processing, Kluwer/Plenum, New York, 2003.
[31] R.W.B. Pearse and A. G. Gaydon, The identification of molecular spectra 4th ed., Chapman & Hall, London, 1976.
[32] R.D.Robertson, H. Hils, H. Catham, and A. Gallagher, Laser plasma coupling in long pulse, long scale length plasmas, Appl. Phys. Lett. 43 (1983) 54-56.
[33] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, Amorphous silicon solar cells deposited at high growth rate, J. Non-Cryst. Solids 299 (2002) 1116-1122.
[34] S. Guha, J. Yang, S.J. Jones, Y. Chan and D.L. Williamson, Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells, Appl. Phys. Lett. 61(1992) 1444-1446.
[35] K.S.S Harsha, Principles of Physical Vapor Deposition of Thin Films, Elsevier Science, Amsterdam, 2005.
[36] W. E. Spear, P. G. LeComber, Substitutional doping of amorphous silicon, Solid State Commun. 17 (1975) 1193-1196. 濱川圭弘 編著,太陽能光伏電池及其應用,張紅梅、崔曉華 譯,2004年。
[37] 熊紹珍、朱美芳 主編,太陽能電池基礎與應用,科學出版社,2010年。
[38] Hans-Gunther Wagenmann, Heinz Eschrich, Photovoltaik,葉開恒譯,西安交通大學出版社,2011年。
[39] S. Matsuo and Y. Adachi, Jpn. J. Appl. Phys., 21, L4, 1982.
[40] S. Matsuo and M. Kiuchi, Jpn. J. Appl. Phys., 22, L210, 1983.
[41] Masatoshi Kitagawa, Kentaro Setsune, Yoshio Manabe and Takashi Hirao, “Properties of Hydrogenated Amorphous Silicon Prepared by ECR Plasma CVD Method”, Japanese Journal of Applied Physics, Vol. 27, NO. 11, pp. 2026-2031, 1988.
[42] M. Zhang, Y. Nakayama, S. Nonoyama and K. Wakita, “Relationship between film quality and deposition rate for a-Si:H by ECR plasma CVD”, Journal of Non-crystalline Solids, Vol. 164-166, pp. 63-66, 1993.
[43] Royta Hidaka and Toru Yamaguchi, “Production of electron cyclotron resonance plasma for uniform deposition using a TE01 mode microwave”, American Institute of Physics, Vol. 65, pp. 1590-1593, 1994.
[44] S. P. Koirala , H. H. Abu-safe, S. L. Mensah, H. A. Naseem and M. H. Gordon, “Langmuir probe and optical emission studies in a radio frequency (rf) magnetron plasma used for the deposition of hydrogenated amorphous silicon”, Surface & Coatings Technology, Vol. 203, pp. 602-605, 2008.
[45] Satoshi Nakayama ,” ECR(electron cyclotron resonance) plasma for thin film technology”, Pure & Appl. Chem., Vol. 62, No. 9, pp. 1751-1756, 1990.
[46] 張以忱 等編著,真空鍍膜技術,冶金工業出版社,2009年
[47] M. Quirk and J. Serda, Semiconductor Manufaceturing Technology, Ch11 Deposition, 2011.
[48] 莊達人,VLSI製造技術,高立圖書有限公司,1996
[49] J. Venables, “Nucleation and Growth of Thin Films”, Rep. Prog. Phys., Vol. 47, pp. 399-459, 1984.
[50] M, Rosenberg, “Instabilities in dusty negative ion plasmas”, Phys. Scr., vol. 79, pp. 1, 2009.
[51] B. Chapman, Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[52] D. J. Griffiths, Introduction to Electrodynamics, third edition, Prentice Hall, U.S.A., 1998.
[53] S. M. Rossnagel, Jerome J. Cuomo, William D. Westwood, Handbook of plasma processing technology Fundamentals, William Dickson, 1937.
[54] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion: Plasma Physics, Second edition, New York, 1984
[55] 黃惠良等人 編著,太陽電池,初版,五南圖書,2009年。
[56] H. M. Mott-Smith and I. Langmuir, “The Theory of Collectors in Gaseous Discharges”, Physical Review, Vol. 28, pp. 727-763, 1926.
[57] Philip Zhengyu Zheng, Langmuir probe for electron-cyclotron-resonance plasma, Texas Tech University, Thesis in Master of Science, 1990.
[58] Y. kawai, Y. Ueda, M. Morimoto, S. Hiejima and I. Katsumata, “Measurements of ECR silane plasma parameter”, Journal of Materials Processing Technology, Vol. 92-93, pp. 230-234, 1999.
[59] Francis F. Chen, ”Langmuir probe analysis for high density plasma”, Physics of Plasmas, Vol. 8, No. 6, pp. 3029-3041, 2001.
[60] 甯逢春,微波電子磁旋諧(ECR)電漿源之研究,清華大學工程與系統科學系,1999年。
[61] R. H. Huddlestone and S. L. Leonard, Plasma diagnostic techniques, Academic Press, New York, 1965.
[62] Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion:Plasma Physics, Second edition, New York: Plenum Press, 1984.
[63] J. B. Daniel, F. H. Herbert, “A system for automagic electrical and optical characterization of microelectromechanical devices”, J MEMS, Vol. 8, pp. 473-482, 1999.
[64] 薛晨陽 張文棟 等編著,半導體薄膜光譜學,科學出版社,2008年。
[65] Matsuda A, Takai M, Nishimoto T, et al. “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials & Solar Cells”, Vol. 78, pp. 3-26, 2003.
[66] Triska, A., D. Dennison and H. Fritzsche, Bull. Am., Phys. Soc.,Vol. 20, NO. 6, 1975.
[67] J. Robertson, J. Appl. Phys. Vol. 87, pp. 2608-2617, 2000.
[68] 葉志鎮 等 編著,半導體薄膜技術與物理,浙江大學出版社,2008年。
[69] 張濟忠 等 編著,現代薄膜技術,冶金工業出版社,2009年。
[70] 王增福 等 編著,實用鍍膜技術,電子工業出版社,2008年。
[71] Moriaki Wakaki, Keiei kudo and Takehisa Shibuya 編著,光學材料手冊(Physical Properties and Data of Optical Materials),周海憲、程云芳譯,化學工業出版社,2010年。
[72] Warren L. Stutzman and Gary A. thiele, Antenna Theory and Design, New York: John Wiley & Sons, p.217, 1981.
[73] R. H. Huddlestone and S. L. Leonard, Plasma diagnostic techniques, Academic Press, New York, 1965.
[74] Francis F. Chen, Introduction to Plasma Physics and Controlled Fusion:Plasma Physics, Second edition, New York: Plenum Press, 1984.
[75] 李正中,薄膜光學與鍍膜技術,2版,藝軒圖書出版社,2001年。
[76] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion: Plasma Physics, Second edition, New York, 1984
[77] S. E. Lassig and J. D. Tucker, “Intermetal dielectric deposition by electron cyclotron resonance chemical vapor deposition (ECR CVD)”, Microelectronics Journal, Vol. 26, pp. 8-22, 1995.
[78] Guha s., et al. “Effect of mircrovoids on initial and light degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol. 61, pp. 1444-1446, 1992.
[79] Tomonori N., et al. “Amorphous silicon solar cell deposited at high growth rate”,
[80] I. Sieber, N. Wanderka, I. Kaiser, W. Fuhs, Electron microscopic characterization of microcrystalline silicon thin films deposited by ECR-CVD, Thin Solid Films 403-404 (2002) 543-548.
[81] 蕭宏(Hong Xiao)著,半導體製程技術導論 修訂版,羅正忠譯,台北市,台灣培生教育,民國98年。
[82] Y. Nakano, S. Goya, T. Watanabe, N. Yamashita, Y. Yonekura, High-deposition-rate of microcrystalline silicon solar cell by using VHF PECVD, Thin Solid Films 506-507 (2006) 33-37.
[83] W. E. Spear, P. G. LeComber, Substitutional doping of amorphous silicon, Solid State Commun. 17 (1975) 1193-1196.
[84] P. C. Choubey, A. Oudhia, R. Dewangan, A review - Recent Research in Science and Technology, Rec Res Sci Technol., 4 (2012) 99-101.
[85] J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, Potential of amorphous and microcrystalline silicon solar cells, Thin Solid Films 451-452 (2004) 518-524.
[86] M. Yoshimi, T. Sasaki, T. Sawada, T. Suezaki, T. Meguro, T. Matsuda, K. Santo, K. Wadano, M. Ichikawa, A. Nakajima, K. Yamamoto, High efficiency thin film silicon hybrid solar cell module on 1m2 – class large area substrate, Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, May , 2 (2003), 1566-1569.
[87] E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, Sanyo′s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business, Proceedings of 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, USA, May, 2 (2006), 1455-1460.
[88] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, Twenty-two percent efficiency HIT solar cell, Sol. Energy Mater. Sol. Cells 93 (2009) 670-673.
[89] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer), Jpn. J. Appl. Phys. 31 (1992) 3518-3522.
[90] M. Sasaki, S. Okamoto, Y. Hishikawa, S. Tsuda, S. Nakano, Characterization of the defect density and band tail of an a-Si:H i-layer for solar cells by improved CPM measurements, Sol. Energy Mater. Sol. Cells 34 (1994) 541-547.
[91] Y. Hishikawa, M. Isomura, S. Okamoto, H. Hashimoto and S. Tsuda, Effects of the i-layer properties and impurity on the performance of a-Si solar cells, Sol. Energy Mater. Sol. Cells 34 (1994) 303-312.
[92] M. Kondo, Microcrystalline materials and cells deposited by RF glow discharge, Sol. Energy Mater. Sol. Cells 78 (2003) 543-566.
[93] H. Curtins, N. Wyrsch, M. Favre, A. V. Shah, Influence of plasma excitation frequency fora-Si:H thin film deposition, Plasma Chem. Plasma Process. 7 (1987) 267-237.
[94] A. Shah, J.Dutta, N. Wyrsch, K. Prasad, H. Curtins, F. Finger, A. Howling, Ch. Hollenstein, VHF Plasma Deposition: A Comparative Overview, Proceedings of the MRS Symp, San Francisco, USA, April, 258 (1992), 15-26.
[95] H. Matsumura, Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon, J. Appl. Phys. 65 (1989) 4396-4402.
[96] S. Nishida, H. Tasaki, M. Konagai, and K. Takahashi, Highly conductive and wide band gap amorphous‐microcrystalline mixed‐phase silicon films prepared by photochemical vapor deposition, J. Appl. Phys. 58 (1985) 1427-1431.
[97] T. Ono, M. Oda, C. Takahashi, and S. Matsuo, Reactive ion stream etching utilizing electron cyclotron resonance plasma, J. Vac. Sci. Technol. B, 4 (1986) 696-700
[98] S. Matsuo and M. Kiuchi, Low Temperature Chemical Vapor Deposition Method Utilizing an Electron Cyclotron Resonance Plasma, Jpn. J. Appl. Phys. 22 (1983) L210-L212.
[99] Y. Ueda, Y. Inoue, S. Shinohara, Y. Kawai, Deposition of large area amorphous silicon films by ECR plasma CVD, Vacuum, 48 (1997) 119-122.
[100] H.L. Hsiao, H.L. Hwang, A.B. Yang, L.W. Chen, T.R. Yew, Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution, Appl. Surf. Sci. 142 (1999) 316-321.
[101] S. Kageyama, M. Akagawa, H. Fujiwara, Ellipsometry characterization of a-Si:H layers for thin-film solar cells, J. Non-Cryst. Solids. 358 (2012) 2257-2259.
[102] I. Sieber, N. Wanderka, I. Kaiser, W. Fuhs, Electron microscopic characterization of microcrystalline silicon thin films deposited by ECR-CVD, Thin Solid Films 403-404 (2002) 543-548.
[103] Y. Nakano, S. Goya, T. Watanabe, N. Yamashita, Y. Yonekura, High-deposition-rate of microcrystalline silicon solar cell by using VHF PECVD, Thin Solid Films 506-507 (2006) 33-37.
[104] S. Ferrero, P. Mandracci, G. Cicero, F. Giorgis, C.F. Pirri, G. Barucca, Large area microcrystalline silicon films grown by ECR-CVD, Thin Solids Films 383 (2001) 181-184.
[105] D.H. Thang, H. Muta, Y. Kawai, Investigation of plasma parameters in 915 MHz ECR plasma with SiH4/H2 mixtures, Thin Solid Films 516 (2008) 4452-4455.
[106] G.J.H. Brussaard, M. van der Steen, M. Carrere, M.C.M. van de Sanden, D.C. Schram, Langmuir probe measurements in expanding magnetized argon, nitrogen and hydrogen plasmas, Surf. Coat. Technol. 98 (1998) 1416-1419.
[107] M. Koga, Y. Hishikawa, H. Tsuchiya, Y. Kawai, Production of a large diameter ECR plasma with low electron temperature, Thin Solid Films 506-507 (2006) 499-502.
[108] S.F. Yoon, K.H. Tan, Q. Zhang, M. Rusli, J. Ahn, L. Valeri, Effect of microwave power on the electron energy in an electron cyclotron resonance plasma, Vacuum 61 (2001) 29-35.
[109] N. Kosku, S. Miyazaki, Insights into the high-rate growth of highly crystallized silicon films from inductively coupled plasma of H2-diluted SiH4, Thin Solid Films 511-512 (2006) 265-270.
[110] L. Kroely, S. K. Ram, P. Bulkin, P.R.I Cabarrocas, Microcrystalline silicon films and solar cells deposited at high rate by Matrix Distributed Electron Cyclotron Resonance (MDECR) plasma, Phys. Status Solidi. C 7 (2010) 517-520.
[111] M.A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing 2nd ed., Wiley, New York, 2005.
[112] F.F. Chen and J.P. Chang, Lecture Notes on Principles of Plasma Processing, Kluwer/Plenum, New York, 2003.
[113] R.W.B. Pearse and A. G. Gaydon, The identification of molecular spectra 4th ed., Chapman & Hall, London, 1976.
[114] R.D.Robertson, H. Hils, H. Catham, and A. Gallagher, Laser plasma coupling in long pulse, long scale length plasmas, Appl. Phys. Lett. 43 (1983) 54-56.
[115] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, Amorphous silicon solar cells deposited at high growth rate, J. Non-Cryst. Solids 299 (2002) 1116-1122.
[116] S. Guha, J. Yang, S.J. Jones, Y. Chan and D.L. Williamson, Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells, Appl. Phys. Lett. 61(1992) 1444-1446.
[117] A. Shah, J.Dutta, N. Wyrsch, K. Prasad, H. Curtins, F. Finger, A. Howling, Ch. Hollenstein, VHF Plasma Deposition: A Comparative Overview, Proceedings of the MRS Symp, San Francisco, USA, April, 258 (1992), 15-26.
[118] H. Matsumura, Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon, J. Appl. Phys. 65 (1989) 4396-4402.
[119] S. Nishida, H. Tasaki, M. Konagai, and K. Takahashi, Highly conductive and wide band gap amorphous‐microcrystalline mixed‐phase silicon films prepared by photochemical vapor deposition, J. Appl. Phys. 58 (1985) 1427-1431.
[120] T. Ono, M. Oda, C. Takahashi, and S. Matsuo, Reactive ion stream etching utilizing electron cyclotron resonance plasma, J. Vac. Sci. Technol. B, 4 (1986) 696-700
[121] S. Matsuo and M. Kiuchi, Low Temperature Chemical Vapor Deposition Method Utilizing an Electron Cyclotron Resonance Plasma, Jpn. J. Appl. Phys. 22 (1983) L210-L212.
[122] Y. Ueda, Y. Inoue, S. Shinohara, Y. Kawai, Deposition of large area amorphous silicon films by ECR plasma CVD, Vacuum, 48 (1997) 119-122.
[123] H.L. Hsiao, H.L. Hwang, A.B. Yang, L.W. Chen, T.R. Yew, Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution, Appl. Surf. Sci. 142 (1999) 316-321.
[124] S. Kageyama, M. Akagawa, H. Fujiwara, Ellipsometry characterization of a-Si:H layers for thin-film solar cells, J. Non-Cryst. Solids. 358 (2012) 2257-2259.
[125] I. Sieber, N. Wanderka, I. Kaiser, W. Fuhs, Electron microscopic characterization of microcrystalline silicon thin films deposited by ECR-CVD, Thin Solid Films 403-404 (2002) 543-548.
[126] Y. Nakano, S. Goya, T. Watanabe, N. Yamashita, Y. Yonekura, High-deposition-rate of microcrystalline silicon solar cell by using VHF PECVD, Thin Solid Films 506-507 (2006) 33-37.
[127] S. Ferrero, P. Mandracci, G. Cicero, F. Giorgis, C.F. Pirri, G. Barucca, Large area microcrystalline silicon films grown by ECR-CVD, Thin Solids Films 383 (2001) 181-184.
[128] D.H. Thang, H. Muta, Y. Kawai, Investigation of plasma parameters in 915 MHz ECR plasma with SiH4/H2 mixtures, Thin Solid Films 516 (2008) 4452-4455.
[129] G.J.H. Brussaard, M. van der Steen, M. Carrere, M.C.M. van de Sanden, D.C. Schram, Langmuir probe measurements in expanding magnetized argon, nitrogen and hydrogen plasmas, Surf. Coat. Technol. 98 (1998) 1416-1419.
[130] M. Koga, Y. Hishikawa, H. Tsuchiya, Y. Kawai, Production of a large diameter ECR plasma with low electron temperature, Thin Solid Films 506-507 (2006) 499-502.
[131] S.F. Yoon, K.H. Tan, Q. Zhang, M. Rusli, J. Ahn, L. Valeri, Effect of microwave power on the electron energy in an electron cyclotron resonance plasma, Vacuum 61 (2001) 29-35.
[132] N. Kosku, S. Miyazaki, Insights into the high-rate growth of highly crystallized silicon films from inductively coupled plasma of H2-diluted SiH4, Thin Solid Films 511-512 (2006) 265-270.
[133] L. Kroely, S. K. Ram, P. Bulkin, P.R.I Cabarrocas, Microcrystalline silicon films and solar cells deposited at high rate by Matrix Distributed Electron Cyclotron Resonance (MDECR) plasma, Phys. Status Solidi. C 7 (2010) 517-520.
[134] M.A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing 2nd ed., Wiley, New York, 2005.
[135] F.F. Chen and J.P. Chang, Lecture Notes on Principles of Plasma Processing, Kluwer/Plenum, New York, 2003.
[136] R.W.B. Pearse and A. G. Gaydon, The identification of molecular spectra 4th ed., Chapman & Hall, London, 1976.
[137] R.D.Robertson, H. Hils, H. Catham, and A. Gallagher, Laser plasma coupling in long pulse, long scale length plasmas, Appl. Phys. Lett. 43 (1983) 54-56.
[138] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, Amorphous silicon solar cells deposited at high growth rate, J. Non-Cryst. Solids 299 (2002) 1116-1122.
[139] S. Guha, J. Yang, S.J. Jones, Y. Chan and D.L. Williamson, Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells, Appl. Phys. Lett. 61(1992) 1444-1446.
[140] K.S.S Harsha, Principles of Physical Vapor Deposition of Thin Films, Elsevier Science, Amsterdam, 2005.
[141] A. Madan, Optoelectronic Properties of Amorphous Silicon Using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) Technique, in: G. Bruno, P. Capezzuto and A. Madan (Eds.), Plasma Deposition of Amorphous Silicon-Based Materials, Academic Press, San Diego, 1995, pp. 243–382. [26]H. M. Mott-Smith and I. Langmuir, “The Theory of Collectors in Gaseous Discharges”, Physical Review, Vol. 28, pp. 727-763, 1926.
[142] L. Latrasse , N. Sadeghi , A. Lacoste , A. Bes and J. Pelletier, “Characterization of high density matrix microwave argon plasmas by laser absorption and electric probe diagnostics”, J. Phys. D: Appl. Phys., vol. 40, pp.5177 -5186,2007.
[143] Q. Wang, D. Ba, J. Feng, “Diagnosis of the Argon Plasma in a PECVD Coating Machine”. Plasma Sci. Technol, Vol. 10,pp. 727, 2008
[144] R.K. Janev and D. Reiter, “Collision processes of Hydride species in Hydrogen plasmas: III. The Silane family”, Contrib. Plasma Phys., Vol. 43, pp. 401-417, 2003.
[145] P. Horváth,“Mass spectroscopic and optical studies of radiofrequency SiH4 and H2-SiH4 plasmas”,Roland Eötvös University,PhD,2007.
[146] M. Goto, H. Toyoda, M. Kitagawa, T. Hirao, and H.Sugai, “low temperature growth of amorphous and polycrystalline silicon films from a modified inductively coupled plasma”, Jpn. J. Appl. Phys., Vol. 36, pp. 3714~3720, 1997.
[147] S. Xu, X. Zhang, Y.Li, S. Xiong, X. Geng, and Y. Zhao, “Improve silane utilization for silicon thin film deposition at high rate”, Thin Solid Film, Vol. 520, pp. 694-696, 2011.
[148] T. Moiseev, D. Chrastina, and G. Isella, “Plasma Composition by Mass Spectrometry in a Ar-SiH4-H2 LEPECVD Process During nc-Si Deposition”, Plasma Chem. Plasma Process, Vol. 31, pp. 154-174, 2011.
[149] D. C. Marra, W. M. M. Kessels, M. C. M. van de Sanden, K. Kashefizadeh , and E. S. Aydila, “In situ infrared study of the role of ion flux and substrate temperature on a-Si:H surface composition”, J. Vac. Sci. Technol. A., Vol. 20, pp. 781-793, 2002.
[150] W. M. M. Kessels, M. C. M. van de Sanden, and D. C. Schram, “Film growth precursors in a remote SiH4 plasma used for high rate deposition of hydrogenated amorphous silicon”, J. Vac. Sci. Technol. A., Vol. 18, pp. 2153- 2166, 2000.
[151] W. M. M. Kessels, M. G. H. Boogaarts, J. P. M. Hoefnagels, M. C. M. van de Sanden, and D. C. Schram,“Improvement of hydrogenated amorphous silicon properties with increasing contribution of SiH3 to film growth”, J. Vac. Sci. Technol. A., Vol. 19, pp. 1007- 1011, 2001.
[152] W. M. M. Kessels, C. M. Leewis, M. C. M. van de Sanden, and
[153] D. C. Schram,“Formation of cationic silicon clusters in a remote silane plasma and their contribution to hydrogenated amorphous silicon film growth”, J. Vac. Sci. Technol. A., Vol. 17, pp. 1531- 1545, 1999.
[154] E. Maruyama, A. Terakawa, M. Taguchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, Sanyo′s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business, Proceedings of 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, USA, May, 2 (2006), 1455-1460.
[155] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, Twenty-two percent efficiency HIT solar cell, Sol. Energy Mater. Sol. Cells 93 (2009) 670-673.
[156] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer), Jpn. J. Appl. Phys. 31 (1992) 3518-3522.
[157] M. Sasaki, S. Okamoto, Y. Hishikawa, S. Tsuda, S. Nakano, “Characterization of the defect density and band tail of an a-Si:H i-layer for solar cells by improved CPM measurements”, Sol. Energy Mater. Sol. Cells, Vol 34, pp. 541-547, 1994.
[158] Y. Hishikawa, M. Isomura, S. Okamoto, H. Hashimoto and S. Tsuda, “Effects of the i-layer properties and impurity on the performance of a-Si solar cells”, Sol. Energy Mater. Sol. Cells, Vol 34, pp. 303-312, 1994.
[159] M. Kondo, “Microcrystalline materials and cells deposited by RF glow discharge”, Sol. Energy Mater. Sol. Cells, Vol 78, pp. 543-566, 2003.
[160] H. Curtins, N. Wyrsch, M. Favre, A. V. Shah, “Influence of plasma excitation frequency fora-Si:H thin film deposition”, Plasma Chem. Plasma Process, Vol 7, pp. 237-267, 1987.
[161] A. Shah, J.Dutta, N. Wyrsch, K. Prasad, H. Curtins, F. Finger, A. Howling, Ch. Hollenstein, “VHF Plasma Deposition: A Comparative Overview”, Proceedings of the MRS Symp, pp. 15-26, San Francisco, USA, April 1992.
[162] H. Matsumura, “Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon”, J. Appl. Phys, Vol 65, pp.4396-4402, 1989.
[163] S. Nishida, H. Tasaki, M. Konagai, and K. Takahashi, “Highly conductive and wide band gap amorphous‐microcrystalline mixed‐phase silicon films prepared by photochemical vapor deposition”, J. Appl. Phys, Vol 58, pp. 1427-1431, 1985.

指導教授 利定東 審核日期 2015-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明